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1o Throughout this note we will use the notations and results
in a previous paper: Annihilators of yon Neumann Algebras (An-
nihilating Spaces), Bull. Kyushu Inst. Tech., (M. & N.S.), No. 10,
pp. 25-39 (1963). We will quote it, whenever necessary, as [A. S..

The trace-class (rc) of operators on a Hilbert space (C) is a Banach
space with the norm r(A) for every A e(rc). We shall denote by t(A)
the trace on (rc) and by (rc)0 a closed subspace {AIt(A)--O of (rc).
And every operator of rank _1 on (C) is represented by f(R) for f,
g . Hence we have t(f (R)-)-- (f, g}.

Let be a closed subspace of (rc)0 generated by operators of
rank _1. If we put O--{g[f(R)e}, then we can easily show
that is a closed linear subspace of 29 (cf. [A. S., p. 30). More-
over, we put zO)-- .

DEFINITION. A closed subspace [ of (rc)0 is called an annihi-
lating space in a Hilbert space , if it satisfies the following condi-
tions:

(1) is generated by operators of rank _1;
(2) is self-adjoint, i.e., if Ae, then A*
(3) if g eZ, then
In [_A. S., we characterized the annihilator 9tz of avon Neumann

algebra as an annihilating space (cf. [A. S., Theorem 1). Our purpose
of this note is to construct an annihilating space concretely in a
sense.

2. We shall state
LEMMA. Let 9 be a yon Neumann algebra and let ’ be the

commutant of 9. Then a closed subspace of (rc)0 generated by the

set {f (R) -, g (R) f If e E(), g (I-- E) (59), Ee i}’} is an annihilating space.

Proof. It is clear that satisfies the conditions (1), (2) of the
above Definition.

Let Y2 be a closed linear subspace of (C) generated by all the
Xf (X9). Hence the projection E} on 93 is an element of ,’.
Therefore, by definition of , (C)zO. Consequently, we have

3 for every f e (C).
Now we shall show an inverse inclusion. If f eE() and

g e (I-- E) ((C)) for any E e 9t’, then we have Tf-- TEf--ETf e E((C))
for every T e }t. Therefore t(T(f (R)-))-- (Tf, g}-- 0 for every T


