# 156. The Role of Mollifiers in S Matrix Theory 

By Hideo Yamagata<br>(Comm. by Kinjirô Kunugi, m.J.A., Nov. 12, 1964)

§ 1. Introduction. In order to describe $S$ matrix in the form $S=T\left(\exp i \int g(x) L(x) d x\right)=\sum_{n=0}^{\infty}\left(i^{n} / n!\right) \int T\left(L\left(x_{1}\right) \cdot L\left(x_{2}\right) \cdots L\left(x_{n}\right)\right) g\left(x_{1}\right) g\left(x_{2}\right)$ $\cdots g\left(x_{n}\right) d x_{1} \cdots d x_{n}$, a function $g(x)$ is used. By using the discussions in [4-6], it can be shown that this function $g(x)$ does not necessarily play the role of testing functions but mollifiers. Namely the direct product of the same $g(x)$ contained in ( $D$ ) cannot construct the dense set in $(D) \otimes(D) \otimes \cdots \otimes(D)$, where $(D)$ is the space consisting of $C^{\infty}$ functions with compact carrier defined by L. Schwartz [2]. Even in infinite direct product space constructed by ( $D$ ) the same problem happens. From this it is obvious that the above description of $S$ matrix is very imcomplete. In $\S 2$ we will show this. This result necessarily shows the incompleteness of the description of causality condition, too. Namely our causality condition is effective to only the $S$ matrix described by the form $S(g)$. Furthermore, it is the limit of formulas showing a sort of causality condition which is effective to non local Lagrangian. To describe the causality condition directly, we must use the element of ranked space instead of $g(x)$ [7-8]. We will show these facts in § 3 .
§ 2. The product of distributions in $S$ matrix theory. Afterward, we use the following notations.

Let $T(u(x) u(y))$ denote the product

$$
T(u(x) u(y))=\left\{\begin{aligned}
u(x) u(y) & \text { for } x^{0}>y^{0} \\
\pm u(y) u(x) & \text { for } x^{0}<y^{0}
\end{aligned}\right.
$$

(For Bose operators, the sign + is used, and for Fermi operators the sign - is used.) This product is called chronological product or $T$-product.

Let $T(u(x) \otimes u(y))$ denote the direct product

$$
T(u(x) \otimes u(y))=\left\{\begin{aligned}
u(x) \otimes u(y) & \text { for } x^{0}>y^{0} \\
\pm u(y) \otimes u(x) & \text { for } x^{0}<y^{0}
\end{aligned}\right.
$$

(For Bose operators the sign + is used, and for Fermi operators the sign - is used.) This direct product is called chronological direct product or $T$ direct product.

Let ( $D$ ) denote the space of $C^{\infty}$ functions with compact carrier which has the topology defined by L. Schwartz in [2], $\prod_{i=1}^{\infty} \otimes(D)$ denote the infinite direct product of ( $D$ ), and $D_{\infty}$ denote the closure of the linear aggregate of the elements in $\prod_{i=1}^{\infty} \otimes(D)$ by means of

