172. Semigroups Whose Regular Representation is a Group ${ }^{1)}$

By J. L. Chrislock
University of California, Davis, Calif., U.S.A.
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1964)

The set of all mappings ρ_{x}, defined by $a \rho_{x}=a x$, is called the regular representation of S. The purpose of this note is to determine all semigroups whose regular representation is a group.

A left group is a semigroup with a right identity and with left solvability. In [1] Clifford proved that any left group is a direct product $G x L$ of a group G and a left zero semigroup L. See [3] for other equivalent definitions.

Lemma 1. If T is the regular representation of a left group $G x L$, then $T \simeq G$.

Lemma 2. If S is a semigroup and if T is its regular representation, then T is a permutation group if and only if S is a left group.

Lemma 3. If T is a permutation group on a set S, then there exists a binary operation on S such that S is a semigroup with T as its regular representation if and only if T satisfies the condition that, for all $\alpha, \beta \in T$ and for all $x \in S, x \alpha=x \beta$ implies that $\alpha=\beta$.

To demonstrate the binary operation in Lemma 3, we let $\left\{S_{i}\right\}$ be the collection of transitivity components of T. We then select from each S_{i} an element e_{i}. Now, for each $x \in S_{i}$ there exists, by assumption, a unique element $\alpha \in T$ such that $e_{i} \alpha=x$. Denoting this α by $x \varphi_{i}$, we get a mapping, for each i, from S_{i} into T. The operation $x \cdot y=x\left(y \varphi_{i}\right)$ if $y \in S_{i}$, makes S a semigroup with T as its regular representation.

If T is a transformation semigroup on a set S, let S^{*} be the set of all elements of S which are in the range of some member of T, and let T^{*} be the set of all elements of T restricted to S^{*}.

Lemma 4. If T is a transformation group on a set S, then T^{*} is a permutation group on S^{*}.

Theorem 1. If T is a transformation group on a set S, then there exists a binary operation on S such that S is a semigroup with T as its regular representation if and only if T satisfies the

[^0]
[^0]: 1) This paper was presented by the author at the 1964 Summer Meeting of the American Mathematical Society at Amherst. The detailed proof will appear elsewhere.
