12. Note on PL-Homeomorphisms of Euclidean n-Space into Itself

By Masahisa Adachi

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1965)

1. Introduction. Let $\mathcal{G}(n)$ be the space of all homeomorphisms of Euclidean *n*-space \mathbb{R}^n into itself provided with the compact-open topology. Let $\mathcal{H}(n)$ be the subspace of all onto homeomorphisms. Let Pl(n) be the subspace of all *PL*-homeomorphisms and PL(n) be the subspace of all onto *PL*-homeomorphisms. Those elements in $\mathcal{G}(n)$, $\mathcal{H}(n)$, Pl(n) and PL(n) which preserve the origin 0 will be denoted by $\mathcal{G}_0(n)$, $\mathcal{H}_0(n)$, $Pl_0(n)$ and $PL_0(n)$ respectively. Recently Kister [1] has shown that $\mathcal{H}_0(n)$ is a weak kind of deformation retract of $\mathcal{G}_0(n)$.

In the present note we show that $PL_0(n)$ is a weak kind of deformation retract of $Pl_0(n)$. More precisely:

Theorem. There is a continuous map $F: Pl_0(n) \times I \rightarrow Pl_0(n)$, for each n, such that

(1) F(g, 0) = g, for all g in $Pl_0(n)$,

(2) F(g, 1) is in $PL_0(n)$ for all g in $Pl_0(n)$,

(3) F(h, t) is in $PL_0(n)$ for all h in $PL_0(n)$,

t in I.

2. Definitions. Let R^n be a Euclidean *n*-space. We consider an ordinary triangulation on R^n . Let *d* be the usual metric in Euclidean *n*-space R^n . Let ρ be the metric in R^n defined by

$$\rho(x, y) = \max_i |x_i - y_i|,$$

for

$$x = (x_1, x_2, \dots, x_n), \qquad y = (y_1, y_2, \dots, y_n)$$

in \mathbb{R}^n . The cube of side 2r with centre at 0 in \mathbb{R}^n is denoted by C_r . This set is also considered as

$$C_r = \{x \in R^n \mid \rho(0, x) \le r\}.$$

If K is a compact set in \mathbb{R}^n containing 0, we define the square radius of K to be

$$r[K] = \max \{r \mid C_r \subset K\}.$$

If $g_1, g_2: K \to R^n$ are imbeddings of the compact set K, then we say g_1 and g_2 are within ε , if for each x in K it is true that $\rho(g_1(x), g_2(x)) < \varepsilon$. If g is in $Pl_0(n)$ and K is a compact set in R^n , $V(g, K, \varepsilon)$ denotes the subset of all elements h in $Pl_0(n)$ such that $g \mid K$ and $h \mid K$ are within ε . Then the collection of all such $V(g, K, \varepsilon)$ is, of course, a base for $Pl_0(n)$.