35. A Note on Countable-dimensional Metric Spaces

By Keiô Nagami and J. H. Roberts
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1965)

This paper is a supplementary note to the characterization of countable-dimensional metric spaces by J. Nagata [2]. A space is countable-dimensional if it is the countable sum of zero-dimensional (in the sense of the covering dimension) subsets. A space is strongly countable-dimensional if it is the countable sum of finite dimensional closed subsets. Now Nagata has characterized these two classes of infinite dimensional metric spaces as follows:

Theorem A [2, Theorem 2.3]. A metric space is countabledimensional if and only if for every collection $\left\{U_{\alpha}: \alpha<\tau\right\}$ of open sets and every collection $\left\{F_{\alpha}: \alpha<\tau\right\}$ of closed sets such that $F_{\alpha} \subset$ $U_{\alpha}, \alpha<\tau$, and such that $\left\{U_{\beta}: \beta<\alpha\right\}$ is locally finite for every $\alpha<$ τ, there exists a collection of open sets $V_{\alpha}, \alpha<\tau$, satisfying
i) $\quad F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \alpha<\tau$,
ii) $\operatorname{order}(x, \mathrm{~B}(\mathfrak{F}))<\infty$ for every $x \in X$, where $\mathfrak{B}=\left\{V_{\alpha}: \alpha<\tau\right\}$ and $\mathrm{B}(\mathfrak{B})=\left\{\mathrm{B}\left(V_{\alpha}\right)=\bar{V}_{\alpha}-V_{\alpha}: \alpha<\tau\right\}$.

Theorem B [2, Theorem 5.3]. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{u}_{1}>$ $\mathfrak{U}_{2}^{*}>\mathfrak{U}_{2}>\mathfrak{l}_{3}^{*}>\cdots$ of open coverings \mathfrak{u}_{i} of X such that
i) for $x \in X,\left\{\operatorname{St}\left(x, \mathfrak{u}_{i}\right): i=1,2, \cdots\right\}$ is a local base of x,
ii) for $x \in X$, sup order $\left(x, \mathfrak{u}_{i}\right)<\infty$.

Our supplementary theorems to these are as follows:
Theorem 1. A metric space X is countable-dimensional if and only if for every sequence of pairs of disjoint closed sets C_{1}, $C_{1}^{\prime} ; C_{2}, C_{2}^{\prime} ; \cdots$, there exist separating closed sets B_{i} between C_{i} and $C_{i}{ }^{\prime}, i=1,2, \cdots$, such that $\left\{B_{i}: i=1,2, \cdots\right\}$ is point-finite.

The only if part of this theorem is a special case of Nagata [2, Lemma 2.1].

Theorem 2. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{u}_{1}>\mathfrak{U}_{2}>\cdots$ of open coverings \mathfrak{u}_{j} of X such that
i) for $x \in X,\left\{\operatorname{St}\left(x, U_{i}^{4}\right): i=1,2, \cdots\right\}$ is a local base of x,
ii) for $x \in X$, sup order $\left(x, \mathfrak{u}_{i}\right)<\infty$.

To prove Theorem 2 we need the following theorem for finite dimensional spaces.

This research was supported in part by the National Science Foundation (U.S.A.) Grant GF-2065.

