35. A Note on Countable-dimensional Metric Spaces

By Keiô NAGAMI and J. H. ROBERTS (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

This paper is a supplementary note to the characterization of countable-dimensional metric spaces by J. Nagata [2]. A space is *countable-dimensional* if it is the countable sum of zero-dimensional (in the sense of the covering dimension) subsets. A space is *strongly countable-dimensional* if it is the countable sum of finite dimensional closed subsets. Now Nagata has characterized these two classes of infinite dimensional metric spaces as follows:

Theorem A [2, Theorem 2.3]. A metric space is countabledimensional if and only if for every collection $\{U_{\alpha}: \alpha < \tau\}$ of open sets and every collection $\{F_{\alpha}: \alpha < \tau\}$ of closed sets such that $F_{\alpha} \subset U_{\alpha}, \alpha < \tau$, and such that $\{U_{\beta}: \beta < \alpha\}$ is locally finite for every $\alpha < \tau$, there exists a collection of open sets $V_{\alpha}, \alpha < \tau$, satisfying

i) $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \ \alpha < \tau$,

ii) order $(x, B(\mathfrak{V})) < \infty$ for every $x \in X$, where $\mathfrak{V} = \{V_{\alpha}: \alpha < \tau\}$ and $B(\mathfrak{V}) = \{B(V_{\alpha}) = \overline{V}_{\alpha} - V_{\alpha}: \alpha < \tau\}$.

Theorem B [2, Theorem 5.3]. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \mathfrak{U}_2 > \mathfrak{U}_3 > \cdots$ of open coverings \mathfrak{U}_i of X such that

i) for $x \in X$, {St (x, \mathfrak{U}_i) : $i=1,2,\cdots$ } is a local base of x,

ii) for $x \in X$, sup order $(x, \mathfrak{U}_i) < \infty$.

Our supplementary theorems to these are as follows:

Theorem 1. A metric space X is countable-dimensional if and only if for every sequence of pairs of disjoint closed sets C_1 , C_1' ; C_2 , C_2' ;..., there exist separating closed sets B_i between C_i and C_i' , i=1,2,..., such that $\{B_i: i=1,2,...\}$ is point-finite.

The only if part of this theorem is a special case of Nagata [2, Lemma 2.1].

Theorem 2. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ of open coverings \mathfrak{U}_j of X such that

i) for $x \in X$, {St(x, U_i^4): $i=1,2,\cdots$ } is a local base of x,

ii) for $x \in X$, sup order $(x, \mathfrak{U}_i) < \infty$.

To prove Theorem 2 we need the following theorem for finite dimensional spaces.

This research was supported in part by the National Science Foundation (U.S.A.) Grant GF-2065.