26. The Relation between ($\mathbf{N}, \mathrm{p}_{n}$) and ($\overline{\mathbf{N}}, p_{n}$) Summability

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1965)
We suppose, throughout this note, that

$$
\begin{aligned}
& p_{n}>0, \quad \sum_{n=0}^{\infty} p_{n}=\infty, \\
& P_{n}=p_{0}+p_{1}+\cdots+p_{n}, \quad n=0,1, \cdots .
\end{aligned}
$$

The Nörlund transformation (N, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{t_{n}\right\}$ by means of the equation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} . \tag{1}
\end{equation*}
$$

As is well known, this transformation is regular if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n}}{P_{n}}=0 . \tag{2}
\end{equation*}
$$

See Hardy [1], p. 64.
The discontinuous Riesz transformation (\bar{N}, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{u_{n}\right\}$ by means of the equation

$$
\begin{equation*}
u_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{\nu} s_{\nu} . \tag{3}
\end{equation*}
$$

This transformation is regular (see Hardy [1], p. 57).
As is easily seen, the transformations (N, p_{n}) and (\bar{N}, p_{n}) take symmetric forms, hence we can expect the close relation between them. We shall prove here the following

Theorem 1. Suppose that

$$
\begin{equation*}
\left\{p_{n}\right\} \text { is non-increasing, } \tag{4}
\end{equation*}
$$

and that

$$
\begin{equation*}
p_{n} \geq \sigma>0, \quad n=0,1, \cdots . \tag{5}
\end{equation*}
$$

Then (\bar{N}, p_{n}) implies*) $\left(N, p_{n}\right)$.
Proof. From (3) we have

$$
s_{n}=\frac{P_{n} u_{n}-P_{n-1} u_{n-1}}{p_{n}}, \quad n=0,1, \cdots,
$$

with $P_{-1}=u_{-1}=0$. Hence, from (1),

[^0]
[^0]: *) Given two summability methods A, B, we say that A implies B if any sequence summable A is summable B to the same sum.

