22. A Limit Theorem for Sums of a Certain Kind of Random Variables

By Saburô UCHIYAMA

Department of Mathematics, Hokkaidô University, Sapporo (Comm. by Zyoiti SUETUNA M.J.A., Feb. 12, 1965)

Let $X=(X,\mathcal{B},\mu)$ be a fixed probability space, i.e. a totally finite measure space X with a measure μ such that $\mu(X)=1$. We consider a sequence of random variables

$$\varphi_m^{(h)}(x) \quad (m=1, 2, \cdots; h \geq 2)$$

on X which are defined by the conditions:

- 1) Let $\rho_1, \rho_2, \dots, \rho_h$ be the set of h-th roots of unity. The functions $\varphi_p^{(h)}(x)$ with prime-number indices p assume the values $\rho_k(1 \le k \le h)$ with equal probability 1/h and they are (stochastically) independent.
- 2) For general $m \ge 1$ the functions $\varphi^{(h)}(x)$ are completely multiplicative with respect to m, i.e.

$$\varphi_{ij}^{(h)}(x) = \varphi_{i}^{(h)}(x)\varphi_{j}^{(h)}(x)$$

for any positive integers i, j: in particular $\varphi^{(h)}(x)=1$ with probability 1.

Apparently, the functions $\varphi_m^{(h)}(x)$ $(m=1, 2, \cdots)$ are not independent.

We write

$$s_n^{(h)}(x) = \sum_{m=1}^n \varphi_m^{(h)}(x)$$
 $(n=1, 2, \cdots).$

Our aim in this note is to prove the following

Theorem. We have for any $\varepsilon > 0$

(1)
$$\lim_{n\to\infty} \frac{s_n^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{7}{4}+\epsilon}} = 0$$

with probability 1 and for $h \ge 3$

(2)
$$\lim_{n\to\infty} \frac{s_n^{(h)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{3}{2}+\epsilon}} = 0$$

with probability 1.

According to P. Erdös (Some unsolved problems. Publ. Math. Inst. Hungar. Acad. Sci., vol. 6 ser. A (1961), pp. 221-254; especially, pp. 251-252), A. Wintner proved that for any $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{s_n^{(2)}(x)}{n^{\frac{1}{2}+\epsilon}}=0$$

with probability 1, and Erdös himself has improved this result to

$$\lim_{n\to\infty}\frac{s_n^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^c}=0$$