## 22. A Limit Theorem for Sums of a Certain Kind of Random Variables

By Saburô Uchiyama<br>Department of Mathematics, Hokkaidô University, Sapporo

(Comm. by Zyoiti Suetuna m.J.A., Feb. 12, 1965)
Let $X=(X, \mathscr{B}, \mu)$ be a fixed probability space, i.e. a totally finite measure space $X$ with a measure $\mu$ such that $\mu(X)=1$. We consider a sequence of random variables

$$
\varphi_{m}^{(h)}(x) \quad(m=1,2, \cdots ; h \geqq 2)
$$

on $X$ which are defined by the conditions:

1) Let $\rho_{1}, \rho_{2}, \cdots, \rho_{h}$ be the set of $h$-th roots of unity. The functions $\varphi_{p}^{(h)}(x)$ with prime-number indices $p$ assume the values $\rho_{k}(1 \leqq k \leqq h)$ with equal probability $1 / h$ and they are (stochastically) independent.
2) For general $m \geqq 1$ the functions $\varphi_{m}^{(h)}(x)$ are completely multiplicative with respect to $m$, i.e.

$$
\varphi_{i j}^{(h)}(x)=\varphi_{i}^{(h)}(x) \varphi_{j}^{(h)}(x)
$$

for any positive integers $i, j$ : in particular $\varphi_{1}^{(h)}(x)=1$ with probability 1.
Apparently, the functions $\varphi_{m}^{(h)}(x)(m=1,2, \cdots)$ are not independent.

We write

$$
s_{n}^{(h)}(x)=\sum_{m=1}^{n} \varphi_{m}^{(h)}(x) \quad(n=1,2, \cdots)
$$

Our aim in this note is to prove the following
Theorem. We have for any $\varepsilon>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{7}{4}+\varepsilon}}=0 \tag{1}
\end{equation*}
$$

with probability 1 and for $h \geqq 3$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\boldsymbol{s}_{n}^{(h)}(x)}{n^{\frac{1}{2}}(\log n)^{\frac{3}{2}+\varepsilon}}=0 \tag{2}
\end{equation*}
$$

with probability 1.
According to P. Erdös (Some unsolved problems. Publ. Math. Inst. Hungar. Acad. Sci., vol. 6 ser. A (1961), pp. 221-254; especially, pp. 251-252), A. Wintner proved that for any $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}+\varepsilon}}=0
$$

with probability 1, and Erdös himself has improved this result to

$$
\lim _{n \rightarrow \infty} \frac{s_{n}^{(2)}(x)}{n^{\frac{1}{2}}(\log n)^{c}}=0
$$

