49. On a Criterion of Quasi-boundedness of Positive Harmonic Functions

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, m.J.A. March 12, 1965)

1. For a positive ${ }^{1)}$ harmonic function u on a Riemann surface R, we denote by $\mathfrak{B} u$ the positive harmonic function on R defined by

$$
(\mathfrak{B} u)(p)=\sup (v(p) ; u \geqq v, v \in H B(R))
$$

for p in R. After Parreau we say that u is quasi-bounded if $\mathfrak{B} u=u$. In this note we shall give a condition for a positive harmonic function to be quasi-bounded by using the rate of diminishing of harmonic measures of level curves of the harmonic function. For the aim, we set

$$
\mathfrak{Z}(u ; a)=(p \in R ; u(p)=a)
$$

for any positive number a. This is the a-level curve of u. For any closed subset F of R, we denote

$$
\omega(F ; p)=\inf s(p),
$$

where s runs over all positive superharmonic functions on R such that $s \geqq 1$ on F. This is the harmonic measure of F relative to R calculated at p. Now fix a point p in R. It is clear that $\omega(\Omega(u ; a) ; p)=$ $O(1 / a)$ for $a \rightarrow \infty$. If u is bounded, then $\omega(\mathcal{R}(u ; a) ; p)=0$ for $a>\sup u$. This suggests us that $\omega(\mathfrak{Z}(u ; a) ; p)=o(1 / a)$ might be a condition for u to be quasi-bounded. This is really the case and we shall prove

Theorem. For a positive harmonic function u on a Riemann surface R, the following three conditions are mutually equivalent:
(1) u is quasi-bounded on R;
(2) $\lim _{a \rightarrow \infty} a \omega(\mathcal{R}(u ; a) ; p)=0$ for some (and hence for any) point p in R;
(3) $\lim \inf _{a \rightarrow \infty} a \omega(\mathcal{R}(u ; a) ; p)=0$ for some (and hence for any) point p in R.
2. It is clear that the condition (2) implies the condition (3). Hence we have only to show the implications (1) $\rightarrow(2)$ and (3) $\rightarrow(1)$. In each case, we may assume that u is unbounded on R and $R \notin O_{H P}$.

Proof of the implication (1) \rightarrow (2). Fix a point p in R and let R_{a} be the connected component of the open set ($q \in R ; u(q)<a)(a>u(p))$ containing the point p. Clearly $\cup_{a>u(p)} R_{a}=R$. Let R^{*} be the Wiener compactification ${ }^{2)}$ of $R, \Delta=R^{*}-R$ and μ be the harmonic measure ${ }^{2 /}$ on

[^0]
[^0]: 1) By positive, we mean non-negative.
 2) C. Constantinescu-A. Cornea: Ideale Ränder Riemannscher Flächen. Springer (1963).
