63. Contraction of the Group of Diffeomorphisms of R^*

By Akira Asada

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1965)

In this note, we show that the group of all diffeomorphisms of class $C^r(1 \le r \le \infty)$ of \mathbb{R}^n is contractible to O(n) under the $C^{r'}$ -topology. $(1 \le r' \le r)$.

The group of diffeomorphisms. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism of class C^r and set

$$f(x) = (f_1(x), \cdots, f_n(x)) \qquad (x \in \mathbb{R}^n),$$

where each $f_i(x)$ is a C^r -function on R^n . Furthermore, we set $|f(x)| = \sqrt{\sum_i |f_i(x)|^2}$,

$$D^pf(x) = (D^pf_1(x), \cdots, D^pf_n(x)), D^p = rac{\partial^{|p|}}{\partial x^{i_1}\cdots\partial x^{i_n}},
onumber \ p = (i_1, \cdots, i_n), \mid p \mid = i_1 + \cdots + i_n,
onumber \ J(f)(x) = rac{\partial(f_1, \cdots, f_n)}{\partial(x_1, \cdots, x_n)}.$$

The set of all C^r -diffeomorphisms of \mathbb{R}^n forms a group. For any $\varepsilon > 0$ and an compact set K of \mathbb{R}^n , consider the following subset of this group:

 $U(f, K, \varepsilon) = \{g \mid \mid f(x) - g(x) \mid < \varepsilon, \mid D^{p}f(x) - D^{p}g(x) \mid < \varepsilon, \mid p \mid \le r', x \in K\}, \text{ where } i \le r' \le r.$

Taking these $U(f, K, \varepsilon)$ as the open basis, the group of all C^{r} diffeomorphisms becomes a topological group. (Cerf [1], 1, 4, 2. Proposition 2, 4°. (p. 287)). We denote this group by $H^{r,r'}(n)$ and denote the subgroup of $H^{r,r'}(n)$ formed by those diffeomorphisms fixing the origin by $H^{r,r'}_0(n)$. The contraction $\rho: H^{r,r'}(n) \times I \to H^{r,r'}(n)$ defined by

$$\rho(f, t) = (f_1(x) - tf_1(0), \cdots, f_n(x) - tf_n(0)),$$

shows that $H_0^{r,r'}(n)$ is a strong deformation retract of $H^{r,r'}(n)$. Hence in the remainder, we consider the group $H_0^{r,r'}(n)$.

Homomorphisms J_0 and ι . Set

$$J_{0}(f) = J(f)(0), f \in H_{0}^{r,r'}(n),$$

$$\iota(a_{ij}) = \left(\sum_{i} a_{i1}x_{i}, \cdots, \sum_{i} a_{in}x_{i}\right), (a_{ij}) \in GL(n, R).$$

Then, for

$$U((a_{ij}), \varepsilon) = \left\{ (b_{ij}) \mid \sqrt{\sum_{ij} (a_{ij} - b_{ij})^2} < \varepsilon \right\},$$

we have

$$J_0(U(f, K, \varepsilon/n)) \subset U(J_0(f), \varepsilon), \quad ext{if } 0 \in K,$$