# 61. On Linear Isotropy Group of a Riemannian Manifold 

By Jun Nagasawa<br>Kumamoto University<br>(Comm. by Kinjirô Kunugi, M.J.A., April 12, 1965)

Introduction. Let $M$ be a connected Riemannian manifold of dimension $n$ and of class $C^{\infty}$, and let $M_{p}$ be the tangent space of $M$ at $p$. According to the Riemannian structure a scalar product $g_{p}(X, Y)$ is defined for any vectors $X, Y \in M_{p}$. We denote by $L_{p}$ the group of all linear transformations of $M_{p}$. The infinitesimal linear isotropy group $K_{p}$ is, by definition [2], the subgroup of $L_{p}$ consisting of all linear transformations of $M_{p}$ which leave invariant the curvature tensor $R$ and the successive covariant differentials $\nabla R$, $\nabla^{2} R, \cdots$ at $p$. We define a group $A_{p}$ as a subgroup of $K_{p}$ consisting of all elements of $K_{p}$ which leave invariant the scalar product $g_{p}(X, Y)$. Let $I(M)$ be the group of isometries of $M$. Let $H_{p}$ be the isotropy group of $I(M)$ at $p$, and let $d H_{p}$ be the linear isotropy group of $H_{p}$. In §1, we shall investigate sufficient conditions that $d H_{p}=A_{p} . \S 2$ is devoted to applications of the main theorem to Riemannian globally symmetric spaces.

## §1. Main theorem.

Theorem 1. If $M$ is a simply connected homogeneous Riemannian manifold, then $d H_{p}=A_{p}$ for each $p$ in $M$.

In order to prove this theorem, we need the following:
Lemma. If $M$ is an analytic complete simply connected Riemannian manifold, then $d H_{p}=A_{p}$ for each $p$ in $M$.

Proof. We have proved that $d H_{p} \subset A_{p}$ for any Riemannian manifold [3] p. 1). Take a normal coordinate system $\left\{x_{1}, \cdots, x_{n}\right\}$ at $p$, with coordinate neighborhood $U$. We may assume that $\left\{\left(\partial / \partial x_{1}\right)_{p}\right.$, $\left.\cdots,\left(\partial / \partial x_{n}\right)_{p}\right\}$ is an orthonormal base, and that $U$ is the interior of a gedesic sphere centered at $p . U$ has the Riemannian metric induced from $M$. Since $M$ is analytic, each element $a \in A_{p}$ induces a local isometry $\tilde{f}$ which maps $U$ onto itself, such that $\tilde{f}(p)=p$ and $(d \tilde{f})_{p}=a$ ([3] p. 2). Since $M$ is a simply connected complete analytic Riemannian manifold, and $U$ is a connected open subset of $M$, this local isometry $\tilde{f}$ can be uniquely extended to $f$, an isometry of $M\left([4]\right.$ p. 256). Clearly $f(p)=p$ and $(d f)_{p}=a$. Therefore we have $A_{p} \subset d H_{p}$.

Proof of Theorem. Since $M$ is a Riemannian homogeneous

