81. On a Certain Functional-Differential Equation

By Shohei Sugiyama
Department of Mathematics, School of Science and Engineering
Waseda University, Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., May 19, 1965)

1. Let \mathfrak{M} be a family of functions continuous in $I: 0 \leqq t<\infty$ in the n-dimensional vector space. Then, we define an operator T satisfying the following conditions:
(i) for any x in $\mathfrak{M}, T x$ is also contained in \mathfrak{M};
(ii) for any sequence $\left\{x_{m}\right\}$ ($x_{m} \in \mathfrak{M}$) uniformly convergent in I, $\left\{T x_{m}\right\}$ is also uniformly convergent in $I ;{ }^{1)}$
(iii) for any scalar functions u and v continuous in I, if $u \leqq v$ is satisfied for $0 \leqq t<s$, where s is an arbitrary constant, then the inequality $T u \leqq T v$ remains valid for $t=s$.

Then, let us consider a functional-differential equation such that (1)

$$
x^{\prime}=f(t, x, T x), x(0)=x_{0}, t \in I .
$$

If we choose the operator and the function f suitably, the equation (1) yields various types of equations, for example, differential equations, integro-differential equations, difference-differential equations, and so on.

In the sequel, the existence of continuous solutions of (1) in I is supposed to be established. However, we need not assume the uniqueness of solutions, so far as we are concerned with the boundedness and stability problems. ${ }^{2)}$
2. We first introduce a V-function as follows. Let $V(t, x)$ be a function of t and x satisfying the following conditions:
(i) $V(t, x)$ is continuous and non-negative in I and $|x|<\infty$;
(ii) $V(t, x)$ satisfies the Lipschitz condition such that

$$
|V(t, x)-V(t, y)| \leqq k(t)|x-y|
$$

where $k(t)$ is continuous in I;
(iii) $\lim _{|x| \rightarrow \infty} V(t, x)=\infty$ uniformly in $t \in I$.

In order to derive some results on the boundedness, it is usefull to introduce two quantities $\mathfrak{D} V(t, x, y)$ and $D V(t, x)$ by setting

$$
\begin{aligned}
& \mathcal{D} V(t, x, y)=\varlimsup_{h \rightarrow 0} \frac{1}{h}(V(t+h, x+h f(t, x, y))-V(t, x)), \\
& D V(t, z(t))=\varlimsup_{h \rightarrow 0} \frac{1}{h}(V(t+h, z(t+h))-V(t, z(t)),
\end{aligned}
$$

[^0]
[^0]: 1) This means that the operator T is continuous.
 2) The author's paper, in which some theorems on the existence and uniqueness of continuous solutions has been discussed, will shortly appear.
