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Let {2}=,.,,...,D(j-l, 2,3,-..,n), and T(2) be the same
notations as those defined in Part XIII [cf. Proc. Japan Acad., Vol.
40, No. 7, 492-497 (1964); let Z() be the sum of the first and second
principal parts of T(); and let us suppose that {,} is everywhere
dense on a (closed or open) rectifiable Jordan curve F and that for
any small positive the circle Il-supl l/e contains the mutually

disjoint sets F, D, D,..., D_, and D inside itself. In this paper
we shall discuss the respective behaviours concerning p of the maximum
moduli of Z() and T(2) on the circle 2-p with sup[ p.

Theorem 43. Let T() be the function with singularities

{2}U D stated above; let Z() be the sum of the first and second
principal parts of T(2); let a-sup2,]; and let Mz(p) denote the

maximum modulus of Z() on the circle [2-p with ap. Then

Mz(p’) Mz(p) (a< p< p’< ),

and or any p with a<p<
1 I1, a,(p)+ib,(p) Mz(p) 1 1(A) _, a (p) + ib’(P) <

where
1 c.T(pet) cos tt dta(P)- - (a<p< ,/-1, 2, 8, ..-).

b,(p)- l-lf T(pet) sin Zt dt

Proof. Let C denote the positively oriented circle I I-P with
a<p< , and let R() be the ordinary part of T(). Then, as already
demonstrated in Theorem 30 of Part XIII quoted above,

1 I T() d- R(-)(z)/(k- 1)! (for every z inside C)
27i o (2--z) -Z(-)(z)/(k-1)! (for every z outside C),

where k-l, 2, 3, .... Furthermore, as can be seen from the method
of the proof of (5) _cf. Proc. Japan Acad., Vol. 38, No. 8, 452-456
(1962), it is verified with the help of these relations that


