118. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XVI

By Sakuji Inoue
Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, m.J.A., Sept. 13, 1965)

Let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}, D_{j}(j=1,2,3, \cdots, n)$, and $T(\lambda)$ be the same notations as those defined in Part XIII [cf. Proc. Japan Acad., Vol. 40, No. 7, 492-497 (1964)]; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; and let us suppose that $\left\{\lambda_{\nu}\right\}$ is everywhere dense on a (closed or open) rectifiable Jordan curve Γ and that for any small positive ε the circle $|\lambda|=\sup _{\nu}\left|\lambda_{\nu}\right|+\varepsilon$ contains the mutually disjoint sets $\Gamma, D_{1}, D_{2}, \cdots, D_{n-1}$, and D_{n} inside itself. In this paper we shall discuss the respective behaviours concerning ρ of the maximum moduli of $\chi(\lambda)$ and $T(\lambda)$ on the circle $|\lambda|=\rho$ with $\sup _{\nu}\left|\lambda_{\nu}\right|<\rho<\infty$.

Theorem 43. Let $T(\lambda)$ be the function with singularities $\left\{\overline{\left.\lambda_{\nu}\right\}} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]\right.$ stated above; let $\chi(\lambda)$ be the sum of the first and second principal parts of $T(\lambda)$; let $\sigma=\sup _{\nu}\left|\lambda_{\nu}\right|$; and let $M_{\chi}(\rho)$ denote the maximum modulus of $\chi(\lambda)$ on the circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$. Then

$$
\begin{aligned}
& M_{\chi}\left(\rho^{\prime}\right) \leqq M_{\chi}(\rho) \quad\left(\sigma<\rho<\rho^{\prime}<\infty\right), \\
& M_{x}(\rho) \rightarrow \infty \quad(\rho \rightarrow \sigma),
\end{aligned}
$$

and for any ρ with $\sigma<\rho<\infty$ (A) $\frac{1}{2} \sqrt{\sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|^{2}} \leqq M_{\chi}(\rho) \leqq \frac{1}{2} \sum_{\mu=1}^{\infty}\left|a_{\mu}(\rho)+i b_{\mu}(\rho)\right|<\infty$, where

$$
\left.\begin{array}{l}
a_{\mu}(\rho)=\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \cos \mu t d t \\
b_{\mu}(\rho)=\frac{1}{\pi} \int_{0}^{2 \pi} T\left(\rho e^{i t}\right) \sin \mu t d t
\end{array}\right\}(\sigma<\rho<\infty, \mu=1,2,3, \cdots)
$$

Proof. Let C denote the positively oriented circle $|\lambda|=\rho$ with $\sigma<\rho<\infty$, and let $R(\lambda)$ be the ordinary part of $T(\lambda)$. Then, as already demonstrated in Theorem 30 of Part XIII quoted above,

$$
\frac{1}{2 \pi i} \int_{\sigma} \frac{T(\lambda)}{(\lambda-z)^{k}} d \lambda=\left\{\begin{array}{l}
R^{(k-1)}(z) /(k-1)!\quad \text { (for every } z \text { inside } C \text {) } \\
\left.-\chi^{(k-1)}(z) /(k-1)!\quad \text { (for every } z \text { outside } C\right),
\end{array}\right.
$$

where $k=1,2,3, \cdots$. Furthermore, as can be seen from the method of the proof of (5) [cf. Proc. Japan Acad., Vol. 38, No. 8, 452-456 (1962)], it is verified with the help of these relations that

