142. On the Total Regularity of Riemann Summability

By Hiroshi HIROKAWA

Department of Mathematics, Chiba University, Chiba, Japan (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

§1. A method of summation is said to be regular if it assigns to every convergent series its actual value. If it furthermore assigns the value $+\infty$ to every series which diverges to $+\infty$, it is said to be totally regular. In this paper we shall consider the total regularity of Riemann summability. Throughout this paper, p denotes a positive integer. A series $\sum_{n=1}^{\infty} a_n$ is said to be summable (R, p) to s if the series in

$$f_p(t) = \sum_{n=1}^{\infty} a_n \left(\frac{\sin nt}{nt} \right)^p$$

converges in some interval $0 < t < t_0$ and $f_p(t) \rightarrow s$ as $t \rightarrow 0+$. A series $\sum_{n=1}^{\infty} a_n$, with its partial sum s_n , is said to be summable (R_p) to s if the series in

$$F_p(t) = C_p^{-1}t \sum_{n=1}^{\infty} s_n \left(\frac{\sin nt}{nt} \right)^p$$

where

$$C_p = \int_0^\infty u^{-p} \sin^p u \, du,$$

converges in some interval $0 < t < t_0$ and $F_p(t) \rightarrow s$ as $t \rightarrow 0+$. It is well-known that the methods (R, p) and (R_p) are regular when $p \ge 2$, while the methods (R, 1) and (R_1) are not regular. (See, for example, [2]). But, concerning the total regularity of Riemman summability, the S.C. Lee's result [4] seems to be the only one. He proved that the method (R, 2) is not totally regular.

§ 2. We shall first prove the following theorem.

THEOREM 1. The method (R, p) is not totally regular when $p \ge 2$. More precisely, given a monotone increasing sequence $\{W_n\}$ tending to $+\infty$ such that $W_n \ n^{-p} \rightarrow 0$ as $n \rightarrow \infty$, there exists a series $\sum_{n=1}^{\infty} a_n$ with $|a_n| \le 2W_n/n$ for all n, such that

$$\sum_{n=1}^{\infty} a_n = +\infty$$
 and $\liminf_{t\to 0+} \sum_{n=1}^{\infty} a_n \left(\frac{\sin nt}{nt}\right)^p = -\infty$.

PROOF. We shall choose a sequence $\{N_k\}$ such that $N_1=1$, $2N_{k-1} < N_k$, and $N_k/25=$ an integer when $k=2,3,4,\cdots$, and define a series $\sum_{n=1}^{\infty} a_n$ such that