167. Monotone Sequence of 0-dimensional Subsets of Metric Spaces

By Keiô NAGAMI

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1965)

Let ω_1 be the first uncountable ordinal and $\omega(c)$ the first ordinal whose power is c. This paper proves the following two theorems.

Theorem 1. Let X be a metric space which is the countable sum of 0-dimensional subsets. Then there exists a sequence $\{J_i: i < \omega\}$ of subsets of X such that i) $J_i \subset J_{i+1}$ for every *i*, ii) dim $J_i \leq 0$ for every *i*, and iii) $\bigcup J_i = X$.

Theorem 2. Let X be a non-empty metric space. Then there exists a transfinite sequence $\{J_{\alpha} : \alpha < \omega_1\}$ of subsets of X such that i) $J_{\alpha} \subset J_{\beta}$ whenever $\alpha < \beta$, ii) dim $J_{\alpha} \leq 0$ for every α , and iii) $\cup J_{\alpha} = X$.

In both cases we use the following notations, where ρ is the preassigned metric on X. Take two sequences $\mathfrak{U}_{ij} = \{U_{\lambda} : \lambda \in A_{ij}\}$ and $\mathfrak{F}_{ij} = \{F_{\lambda} : \lambda \in A_{ij}\}$, where $i, j = 1, 2, \cdots$, which satisfy the following conditions (cf. Bing [1]):

- (1) \mathfrak{U}_{ij} is a discrete collection of open sets of X.
- (2) \mathfrak{F}_{ij} is a collection of non-empty closed sets of X.
- (3) $F_{\lambda} \subset U_{\lambda}$ for every $\lambda \in A$, where $A = \bigcup A_{ij}$.
- (4) $\mathfrak{F}_i = \{F_\lambda : \lambda \in A_i\}$ covers X for every *i*, where $A_i = \bigcup A_{ij}$.
- (5) $\mathfrak{U}_i = \{U_{\lambda} : \lambda \in A_i\}$ is locally finite.
- (6) $\rho(\mathfrak{U}_i) < 1/i$.

Set $U_{ij} = \bigcup \{U_{\lambda} : \lambda \in A_{ij}\}$ and $F_{ij} = \bigcup \{F_{\lambda} : \lambda \in A_{ij}\}.$

Proof of Theorem 1. Let I' be the set of all rational numbers r with 0 < r < 1. By Nagata [4, Lemma 4.1] there exists a collection $\{U_{ijr}: i, j=1, 2, \dots, r \in I'\}$ of open sets of X which satisfies the following conditions:

- (7) $F_{ij} \subset U_{ijr} \subset \overline{U}_{ijr} \subset U_{ijs} \subset \overline{U}_{ijs} \subset U_{ij}$ for r < s.
- (8) $\{B(U_{ijr}) = \overline{U}_{ijr} U_{ijr} : i, j = 1, 2, \dots, r \in I'\}$ is pointfinite.

Let $I' = \{r_1, r_2, \dots\}$ and $J_i = X - \bigcup \{B(U_{jkr}): j, k=1, 2, \dots, r \in I' - \{r_1, \dots, r_i\}\}$. Then by Morita [3, Lemma 3.3] dim $J_i \leq 0$. It is evident that $J_1 \subset J_2 \subset \cdots$. To see $\bigcup J_i = X$ let x be an arbitrary point of X. By (8) there exists i such that $x \notin B(U_{ijr})$ for any i, j and any $r \in I' - \{r_1, \dots, r_i\}$. Hence $x \in J_i$ and the proof is completed.

Proof of Theorem 2. Let *I* be the unit interval [0, 1] and $\{I_{\alpha} : \alpha < \omega(c)\}$ the family of all residue classes of *I modulo* the rational numbers. Set

$$L_{\alpha} = \bigcup \{ I_{\beta} : \beta \leq \alpha \text{ or } \omega_1 \leq \beta < \omega(\mathfrak{c}) \}, \ \alpha < \omega_1.$$