204. Decompositions of Generalized Algebras. II

By F. M. SIOSON

Department of Mathematics, University of Florida (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

Theorem 3. Every genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ with finitary operations is isomorphic with a subdirect product of subdirectly irreducible genalgebras.

Proof. Consider arbitrary elements $x, y \in G$, $a, b \in A$ such that $x \neq y$ and $a \neq b$. Let $\mathcal{L}(x, y; a, b)$ be the family of all reduced congruences (θ, φ) of $\mathcal{L}(x, y; a, b)$ such that

$$(x, y) \notin \theta$$
 and $(a, b) \notin \varphi$.

Since $(\varDelta_{a}, \varDelta_{A}) \in \mathcal{L}(x, y; a, b)$, then $\mathcal{L}(x, y; a, b) \neq \emptyset$. It is partially ordered and every linearly ordered subset of it possesses an upper bound given by its join. Hence, by Zorn's lemma, $\mathcal{L}(x, y; a, b)$ has a maximal element $(\theta_{xy}, \varphi_{ab})$. To show that the quotient genalgebra $\mathfrak{S}/(\theta_{xy}, \varphi_{ab}) = \langle G/\theta_{xy}, o_{1}, \cdots, o_{n}, A/\varphi_{ab} \rangle$

is subdirectly irreducible, it suffices to show that it has no proper reduced congruences and hence no proper congruences. If it does possess proper reduced congruences, let $(\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda})$ ($\lambda \in \Lambda$) be the family of all reduced congruences in $\mathfrak{S}/(\theta_{xy}, \varphi_{ab})$. By Theorem C each such congruence $(\tilde{\theta}_{\lambda}, \tilde{\varphi}_{\lambda})$ corresponds to a reduced congruence $(\theta_{\lambda}, \varphi_{\lambda})$ in \mathfrak{S} such that

$$(\theta_{\lambda}, \varphi_{\lambda}) \geqq (\theta_{xy}, \varphi_{ab}).$$

Clearly, $\theta_{\lambda} \supseteq \theta_{xy}$ for all $\lambda \in \Lambda$; for, if $\theta_{\lambda} = \theta_{xy}$, then $\varphi_{\lambda} = \varphi_{ab}$, since both congruences are reduced. Thus we have $\bigcap_{\lambda \in \Lambda} \theta_{\lambda} \supseteq \theta_{xy}$ and in any case $\bigcap_{\lambda \in \Lambda} (\theta_{\lambda}, \varphi_{\lambda}) \supseteq (\theta_{xy}, \varphi_{ab})$.

The reduction

$$\bigcap_{\lambda \in A} (\theta_{\lambda}, \varphi)$$

of the congruence on the left side must properly contain the congruence on the right side; for, if $\varphi \cong \varphi_{ab}$, then

$$(\bigcap_{\lambda \in A} \theta_{\lambda}, \varphi) \cap (\theta_{xy}, \varphi_{ab}) = (\bigcap_{\lambda \in A} \theta_{\lambda} \cap \theta_{xy}, \varphi \cap \varphi_{xy}) = (\theta_{xy}, \varphi)$$

contrary to the fact that $(\theta_{xy}, \varphi_{ab})$ is reduced. Whence the genalgebra $\mathfrak{S}/(\theta_{xy}, \varphi_{ab})$ is subdirectly irreducible. Obviously,

$$\bigcap_{x \neq y} \bigcap_{a \neq b} (\theta_{xy}, \varphi_{ab}) = (\bigcap_{x \neq y} \theta_{xy}, \bigcap_{a \neq b} \varphi_{ab}) = (\varDelta_{\mathcal{G}}, \varDelta_{\mathcal{A}})$$

and therefore the final conclusion follows.

Theorem 4. The necessary and sufficient conditions for a genalgebra $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ to be isomorphic to a direct product of genalgebras $\mathfrak{S}_{\lambda} = \langle G_{\lambda}, o_{1}^{\lambda}, \dots, o_{n}^{\lambda}, A_{\lambda} \rangle (\lambda \in \Lambda)$ are that (1) there exists