203. Decompositions of Generalized Algebras. I

By F. M. SIOSON

Department of Mathematics, University of Florida (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

In an unpublished paper [5],^{*)} the author proposed an organic unification and generalization of the theories of G. Birkhoff's universal algebras [1], A. Tarski's relational systems [6], and G. Grätzer's multialgebras [3] (further, [2], [4]). Even under this very general setting, one is able to recapture the homomorphism theorems, the isomorphism theorems, and the Schreier-Jordan-Hölder theorems of algebra.

The unification was achieved by defining a generalized algebra (or simply a genalgebra) as a system $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$ consisting of a pair of sets G and A and a family (which may be finite or infinite) of (finitary or infinitary) functions

$o_i: G^{m_i} \to A$

 $(i=1, \dots, n)$ called operations. Thus, we have universal algebras when A=G; relational systems when $A=\{T, F\}$; multialgebras when $A=2^{\sigma}$; and related universal algebras when $A=G\cup\{T, F\}$. The *n*-tuple (m_1, \dots, m_n) is called the *type* of the genalgebra. If $K\subseteq G$ and $C\subseteq A$ such that for each $i=1, \dots, n$ and all elements $x_1, x_2, \dots, x_{m_i} \in K$ we also have $o_i(x_1, x_2, \dots, x_{m_i}) \in C$, then $\mathcal{K}=\langle K, o_1, \dots, o_n, C \rangle$ is said to be a *sub-genalgebra* of \mathfrak{S} . When C moreover is minimal, that is, when

$$C = \bigcup_{i=1}^{n} o_i(K, K, \cdots, K),$$

 \mathcal{K} is said to be a reduced genalgebra.

Given any other genalgebra $\mathcal{H} = \langle H, o'_1, \dots, o'_n, B \rangle$ of the same type as $\mathfrak{S} = \langle G, o_1, \dots, o_n, A \rangle$, a homomorphism from \mathfrak{S} to \mathcal{H} is a pair (h, k) of functions $h: G \to H$ and $k: A \to B$ such that for all $i=1, \dots, n$, the following holds

 $k(o_i(x_1, x_2, \dots, x_{m_i})) = o'_i(h(x_1), h(x_2), \dots, h(x_{m_i}))$

for all $x_1, x_2, \dots, x_{m_i} \in G$. When both h and k are onto and one-to-one functions, then (h, k) is called an *isomorphism*. A *congruence* in the genalgebra \mathfrak{S} is a pair (θ, φ) of equivalence relations θ on G and φ on A such that for each $i=1, \dots, n$, if $(x_j, y_j) \in \theta$ for $j=1, 2, \dots, m_i$, then also $(o_i(x_1, x_2, \dots, x_{m_i}), o_i(y_1, y_2, \dots, y_{m_i})) \in \varphi$. It should be noted that if (h, k) is a homomorphism of \mathfrak{S} into \mathcal{H} , then (θ, φ) with $\theta = hh^{-1}$ and $\varphi = kk^{-1}$ is a congruence (θ, φ) on \mathfrak{S} defines a new

^{*)} For the references, see the list at the end of the following article.