201. Some Applications of the FunctionalRepresentations of Normal Operators in Hilbert Spaces. XIX

By Sakuji Inoue
Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)

We next discuss the case where the ordinary part of $T(\lambda)$ is a polynomial of degree d.

Theorem 52. Let $T(\lambda)$ and σ be the same notations as before; let the ordinary part $R(\lambda)$ of $T(\lambda)$ be a polynomial in λ of degree d; let c be any finite complex number; let $n_{d}(\rho, c)$ denote the number of all the c-points, with due count of multiplicity, of $T(\lambda)$ in the domain $\Delta_{\rho}\{\lambda: \rho<|\lambda|<\infty\}$ with $\sigma<\rho<\infty$; let e_{a} denote the coefficient of λ^{d} in the expansion of $R(\lambda)$; let

$$
N_{a}(\rho, c)=\int_{\rho}^{\infty} \frac{n_{a}(r, c)}{r} d r \quad(\sigma<\rho<\infty) ;
$$

let

$$
m_{a}(\rho, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left[T\left(\rho e^{-i t}\right), c\right]} d t(\sigma<\rho<\infty) ;
$$

and let

$$
m_{a}(\infty, c)=\lim _{\rho \rightarrow \infty} m_{a}(\rho, c)\left(=\log \sqrt{1+|c|^{2}}\right) .
$$

Then the equality
$N_{a}(\rho, c)+m_{a}(\rho, c)-m_{a}(\infty, c)+\log \left|e_{a}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\sqrt{1+\left|T\left(\rho e^{-i t}\right)\right|^{2}}}{\rho^{d}} d t$ holds for every finite value c and every ρ with $\sigma<\rho<\infty$; and both the left and right sides of this equality converge to $\log \left|e_{a}\right|$ as ρ becomes infinite.

Proof. Suppose that $R(\lambda)=\sum_{\mu=0}^{d} e_{\mu} \lambda^{\mu},\left(e_{a} \neq 0\right)$, and consider the function $g(\lambda)$ defined by

$$
g(\lambda)=\left\{\begin{array}{l}
\lambda^{a}\left[T\left(\frac{1}{\lambda}\right)-c\right]\left(0<|\lambda| \leqq \frac{1}{\rho}, \sigma<\rho<\infty\right) \\
e_{d}(\lambda=0)
\end{array}\right.
$$

Then $g(\lambda)=\sum_{\mu=0}^{d} e_{\mu} \lambda^{a-\mu}+\sum_{\mu=1}^{\infty} C_{-\mu} \lambda^{a+\mu}-c \lambda^{a}$ where $C_{-1}, C_{-2}, C_{-3}, \cdots$ are the coefficients stated at the beginning of the proof of Theorem 47, and $g(\lambda)$ is regular in the closed domain $\left\{\lambda: 0 \leqq|\lambda| \leqq \frac{1}{\rho}\right\}$. If we now denote all the zeros, repeated according to the respective orders,

