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We next discuss the case where the ordinary part of T(2) is a
polynomial of degree d.

Theorem 52. Let T() and a be the same notations as before;
let the ordinary part R() of T(2) be a polynomial in 2 of degree d;
let c be any finite complex number; let n(p, c) denote the number
of all the c-points, with due count of multiplicity, of T(2) in the
domain z/{ pl ]} with ap let e denote the coefficient
of ,V in the expansion of R(); let

let

and let

m(p, c)- - T(pe-), c dt

m(, c)- lim ma(p, c)(- log /1+]c ]).

Then the equality
1 I VI+] T(pe-t)] dtN(p, c)/ ma(p, c)-m(, c)/ log e I- -0

log

holds for every finite value c and every p with a(p( and both
the left and right sides of this equality converge to log]e[ as p
becomes infinite.

d

Proof. Suppose that R(2)- eft, (e0), and consider the

function g(2) defined by

g(2)-- p
e (2-- 0).

d +Then g()- efl-’+ ’_ -c2 where C_, C_, C_,
=0 =1

are the coefficients stated at the beginning of the proof of Theorem

47, and g(2)is regular in the closed domain {2" 0.]}. If we

now denote all the zeros, repeated according to the respective orders,


