908 [Vol. 41,

199. Axiom Systems of B-algebra. II

By Yoshinari ARAI and Kiyoshi ISÉKI (Comm. by Kinjirô Kunugi, M.J.A., Dec. 13, 1965)

In the first note [2], we gave axiom systems of B-algebra. A B-algebra $M=\langle x, 0, *, \sim \rangle$ is given by the following axioms:

- $B \ 1 \quad x * y \leq x$
- $B \ 2 \ (x*z)*(y*z) \leq (x*y)*z,$
- $B \ 3 \ x * y \leq (\sim y) * (\sim x),$
- $B \ 4 \ 0 \leqslant x$

where $x \le y$ means x * y = 0, and if $x \le y$, $y \le x$, then we write x = y. There are some axiom systems which is equivalent to $B \ 1 \sim B \ 4$. For the details, see [1],[2], and [3].

In this note, we shall show the following

Theorem. A B-algebra $M = \langle X, 0, *, \sim \rangle$ is characterized by

$$L 1 \quad x*(\sim y) \leqslant x*(z*y),$$

- $L 2 \quad x * y \leq x * (y * z),$
- $L \ 3 \ (x*(y*z))*(x*y) \leq x*(\sim z),$
- $L \ 4 \ 0 \leqslant x$.

The conditions $L\ 1\sim L\ 4$ are an algebraic formulation of Lukasiewicz axioms of classical propositional calculus.

We first prove $B \Rightarrow L$.

As shown in [1], if $x \le y$ in a B-algebra, then $z * y \le z * x$ for any $z \in X$. Hence, by B 1, we have $x * y \le x * (y * z)$. On the other hand, by (8) in [1], $z * y \le \sim y$. Therefore we have $x * (\sim y) \le x * (z * y)$. Next we have the following relation.

$$(x*(y*z))*(x*y) = (\sim (y*z)*(\sim x))*(\sim y*\sim x) \le (\sim (y*z)*\sim y)*(\sim x)$$

= $(y*(y*z))*\sim x \le x*\sim (y*(y*z)).$

On the other hand, by $y*z \le y*z$, we have $y*(y*z) \le z$. Hence $\sim z \le \sim (y*(y*z))$. Therefore we have

$$(x*(y*z))*(x*y) \le x*\sim (y*(y*z)) \le x*(\sim z),$$

which completes the proof of $B \Rightarrow L$.

Now we shall prove $L \Rightarrow B$.

From L 1 and L 2, we have

 $(1) x \leqslant y * z \text{ implies } x \leqslant \sim z \text{ and } x \leqslant y.$

By L 2, we have $(x*y)*x \le (x*y)*(x*(y*z)) = 0$. Hence

$$(2) x*y \leqslant x,$$

which is B1. From L3, we have

- $(3) x \leqslant \sim z \text{ implies } x * (y * z) \leqslant x * y.$
- $(4) x \leqslant \sim z, x \leqslant y \text{ imply } x \leqslant y * z.$

By L 1 and (2), we have