199. Axiom Systems of B-algebra. II

By Yoshinari Arai and Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)

In the first note [2], we gave axiom systems of B-algebra. A B-algebra $M=\langle x, 0, *, \sim\rangle$ is given by the following axioms:

$$
\begin{aligned}
& \text { B } 1 x * y \leqslant x \text {, } \\
& \text { B } 2(x * z) *(y * z) \leqslant(x * y) * z \text {, } \\
& \text { B } 3 x * y \leqslant(\sim y) *(\sim x) \text {, } \\
& \text { B4 } 0 \leqslant x \text {, }
\end{aligned}
$$

where $x \leqslant y$ means $x * y=0$, and if $x \leqslant y, y \leqslant x$, then we write $x=y$. There are some axiom systems which is equivalent to $B 1 \sim B 4$. For the details, see [1],[2], and [3].

In this note, we shall show the following
Theorem. A B-algebra $M=\langle X, 0, *, \sim\rangle$ is characterized by
$L 1 \quad x *(\sim y) \leqslant x *(z * y)$,
$L 2 x * y \leqslant x *(y * z)$,
$L 3(x *(y * z)) *(x * y) \leqslant x *(\sim z)$,
$L 4 \quad 0 \leqslant x$.
The conditions $L 1 \sim L 4$ are an algebraic formulation of Lukasiewicz axioms of classical propositional calculus.

We first prove $B \Rightarrow L$.
As shown in [1], if $x \leqslant y$ in a B-algebra, then $z * y \leqslant z * x$ for any $z \in X$. Hence, by $B 1$, we have $x * y \leqslant x *(y * z)$. On the other hand, by (8) in [1], $z * y \leqslant \sim y$. Therefore we have $x *(\sim y) \leqslant x *(z * y)$. Next we have the following relation.

$$
\begin{aligned}
(x *(y * z)) *(x * y) & =(\sim(y * z) *(\sim x)) *(\sim y * \sim x) \leqslant(\sim(y * z) * \sim y) *(\sim x) \\
& =(y *(y * z)) * \sim x \leqslant x * \sim(y *(y * z))
\end{aligned}
$$

On the other hand, by $y * z \leqslant y * z$, we have $y *(y * z) \leqslant z$. Hence $\sim z \leqslant \sim(y *(y * z))$. Therefore we have

$$
(x *(y * z)) *(x * y) \leqslant x * \sim(y *(y * z)) \leqslant x *(\sim z)
$$

which completes the proof of $B \Rightarrow L$.
Now we shall prove $L \Rightarrow B$.
From $L 1$ and $L 2$, we have
(1) $\quad x \leqslant y * z$ implies $x \leqslant \sim z$ and $x \leqslant y$.

By $L 2$, we have $(x * y) * x \leqslant(x * y) *(x *(y * z))=0$. Hence
(2) $\quad x * y \leqslant x$,
which is $B 1$. From $L 3$, we have
(3) $\quad x \leqslant \sim z$ implies $x *(y * z) \leqslant x * y$.
(4) $\quad x \leqslant \sim z, x \leqslant y$ imply $x \leqslant y * z$.

By $L 1$ and (2), we have

