26. Characterizations of BCI, BCK-Algebras

By Yoshinari ARAI, Kiyoshi ISÉKI, and Shôtarô TANAKA (Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1966)

In this note, we shall consider some characterizations of the *BCI*, *BCK*-algebras defined in [1]. By a *BCI-algebra*, we mean an algebra $M = \langle X, 0, * \rangle$ with an element 0 and a binary operation * satisfying the following conditions *BCI* $1 \sim 5$:

 $BCI \ 1 \quad (x * y) * (x * z) \leq z * y,$

 $BCI \ 2 \quad x * (x * y) \leq y,$

BCI 3 $x \leq x$,

BCI 4 $x \leq y, y \leq x$ imply x = y.

BCI 5 $x \leq 0$ implies x=0,

where $x \leq y$ means x * y = 0.

BCI 5 is equivalent to: x*0=0 implies x=0. If *BCI* 5 is replaced by *BCI* 6: $0 \le x$ for every $x \in X$, the algebra *M* is called *BCK-algebra*.

In [1], we proved that

 $(6) \quad (y*x)*(z*x) \leq y*z$

holds in the BCI-algebra. We first prove the following

Theorem 1. The BCI-algebra is characterized by BCI $2\sim5$ and (6).

Proof. (6) implies the following results:

(7) If $y \leq z$, then $y * x \leq z * x$.

(8) If $x \leq y$, $y \leq z$, then $x \leq z$.

By (6) and (7), we have

 $(9) \quad ((y*x)*(z*x))*u \leq (y*z)*u.$

We substitute y * u for z in (9), then by BCI 2, we have

(10) $(y * x) * ((y * u) * x) \leq u$.

In formula (10), let x=y, y=x*z, and u=(x*y)*z, then $((x*z)*y)*(((x*z)*((x*y)*z))*y) \leq (x*y)*z$.

The second term of the left side is equal to 0, hence if $x * y \le z$, i.e. (x*y)*z=0, then in the formula above, the right side is equal to 0, so we have $x*z \le y$ by BCI 5. Therefore, we have

(11) If $x * y \leq z$, then $x * z \leq y$.

Hence, by (11) and (6),

BCI 1 $(x*y)*(x*z) \leq z*y$.

It is obvious from [1] that the converse holds. The proof of Theorem 1 is complete.

By Theorem 1, we have the following