21. Regularity of Orbits Space on Semisimple Lie Groups

By Nobuhiko Tatsuuma
Department of Mathematics, Kyoto University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1966)

1. Let G be a semisimple Lie group, and $K H N$ be its Iwasawa decomposition, M be the subgroup $K \cap \mathfrak{C}(H)$ where $\mathfrak{C}(H)$ shows the centralizer of H.
F. Bruhat [1] shows that $\Gamma=M H N$ is a closed subgroup of G, and G is a disjoint sum of finite $\Gamma-\Gamma$ double cosets which correspond to elements of Weyl group in one-to-one way.

While denote by $G^{t}=G \times \cdots \times G$ the direct product of G with multiplicity t and by $\widetilde{G}_{t}=\left\{(g, \cdots, g) \in G^{t}\right\}$ the diagonal subgroup of G^{t}, which is isomorphic to G.

There exists a question whether Γ^{t} and \widetilde{G}_{t} are regularly related in G^{t} or not, in the sense of Mackey [2]. This problem is related to a problem of decomposability of Kronecker product of induced representations of G by representations of Γ, with multiplicity t (cf. [3]).

The purpose of this work is to solve this problem affirmatively. Proposition. Γ^{t} and \widetilde{G}_{t} are regularly related in G^{t}.
2. Proof of the proposition. At first, we can equate $\Gamma^{t} \backslash G^{t} / \widetilde{G}_{t}$ to $\Gamma^{t-1} \backslash G^{t-1} / \widetilde{\Gamma}_{t-1}$ by the map of representatives of cosets, $G^{t} \ni\left(g_{1}, g_{2}\right.$, $\left.\cdots, g_{t}\right) \rightarrow\left(g_{1} g_{t}^{-1}, g_{2} g_{t}^{-1}, \cdots, g_{t-1} g_{t}^{-1}\right) \in G^{t-1}$.

Using Glimms results [4], we can conclude that $\Gamma \backslash G / \Gamma$ is T_{0} and the union of all lower dimensional $\Gamma-\Gamma$ double cosets in G becomes a null set F in G, and $G^{\prime}=G-F$ is open as a union of open cosets. Therefore it is sufficient to show the space $\Gamma^{t-1} \backslash\left(G^{\prime}\right)^{t-1} / \widetilde{\Gamma}_{t-1}$ is countably separated.

Again by [4], the last space is countably separated if and only if it is T_{0}. And for fixed l and closed subgroups $A \supset B$ in Γ^{l}, if $\Gamma^{l} \backslash\left(G^{\prime}\right)^{l} / A$ and $\hat{g} \Gamma^{l} \hat{g}^{-1} \cap A \backslash A / B$ are T_{0} for any \hat{g} in $\left(G^{\prime}\right)^{l}$, then $\Gamma^{l} \backslash\left(G^{\prime}\right)^{l} / B$ is T_{0}.

In this case, we put $A=\widetilde{\Gamma}_{l-1} \times \Gamma=\left\{\left(\gamma, \cdots, \gamma, \gamma^{\prime}\right) \in \Gamma^{\prime}\right\}$ and $B=\widetilde{\Gamma}_{l}$. Then easily we get, $\Gamma^{l} \backslash\left(G^{\prime}\right)^{l} / \widetilde{\Gamma}_{l-1} \times \Gamma \sim \Gamma^{l-1} \backslash\left(G^{\prime}\right)^{l-1} / \widetilde{\Gamma}_{l-1} \times \Gamma \backslash G^{\prime} / \Gamma$ and $\hat{g} \Gamma^{l} \hat{g}^{-1} \cap A \backslash A / B \sim \Gamma^{l-1}(\hat{g}) \times \Gamma^{1}\left(g_{l}\right) \backslash \Gamma \times \Gamma / \widetilde{\Gamma}_{2} \sim \Gamma^{l-1}(\widehat{g}) \backslash \Gamma / \Gamma^{1}\left(g_{l}\right), \quad$ where $\Gamma^{l-1}(\widehat{g})=\Gamma \cap g_{1} \Gamma g_{1}^{-1} \cap g_{2} \Gamma g_{2}^{-1} \cap \cdots \cap g_{l-1} \Gamma_{g_{l-1}}^{-1}$, and $\Gamma^{1}\left(g_{l}\right)=g_{l} \Gamma g_{l}^{-1} \cap \Gamma$, for $\hat{g}=\left(g_{1}, g_{2}, \cdots, g_{l}\right)$ in $\left(G^{\prime}\right)^{l}$. Consequently, if we prove $\Gamma^{l-1}(\hat{g}) \backslash \Gamma / \Gamma^{1}\left(g_{l}\right)$ is T_{0}, then by the induction with respect to l, we get the proof.

Now we shall show that $\Gamma^{1}(g)$ is conjugate to $M H$ in Γ for any

