21. Regularity of Orbits Space on Semisimple Lie Groups

By Nobuhiko TATSUUMA

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1966)

1. Let G be a semisimple Lie group, and KHN be its Iwasawa decomposition, M be the subgroup $K \cap \mathfrak{C}(H)$ where $\mathfrak{C}(H)$ shows the centralizer of H.

F. Bruhat [1] shows that $\Gamma = MHN$ is a closed subgroup of G, and G is a disjoint sum of finite $\Gamma - \Gamma$ double cosets which correspond to elements of Weyl group in one-to-one way.

While denote by $G^t = G \times \cdots \times G$ the direct product of G with multiplicity t and by $\widetilde{G}_t = \{(g, \dots, g) \in G^t\}$ the diagonal subgroup of G^t , which is isomorphic to G.

There exists a question whether Γ^t and \tilde{G}_t are regularly related in G^t or not, in the sense of Mackey [2]. This problem is related to a problem of decomposability of Kronecker product of induced representations of G by representations of Γ , with multiplicity t(cf. [3]).

The purpose of this work is to solve this problem affirmatively. Proposition. Γ^t and \tilde{G}_t are regularly related in G^t .

2. Proof of the proposition. At first, we can equate $\Gamma^t \backslash G^t / \tilde{G}_t$ to $\Gamma^{t-1} \backslash G^{t-1} / \tilde{\Gamma}_{t-1}$ by the map of representatives of cosets, $G^t \ni (g_1, g_2, \dots, g_t) \longrightarrow (g_1 g_t^{-1}, g_2 g_t^{-1}, \dots, g_{t-1} g_t^{-1}) \in G^{t-1}$.

Using Glimms results [4], we can conclude that $\Gamma \setminus G/\Gamma$ is T_0 and the union of all lower dimensional Γ - Γ double cosets in G becomes a null set F in G, and G' = G - F is open as a union of open cosets. Therefore it is sufficient to show the space $\Gamma^{t-1} \setminus (G')^{t-1}/\widetilde{\Gamma}_{t-1}$ is countably separated.

Again by [4], the last space is countably separated if and only if it is T_0 . And for fixed l and closed subgroups $A \supset B$ in Γ^i , if $\Gamma^i \backslash (G')^i / A$ and $\hat{g} \Gamma^i \hat{g}^{-1} \cap A \backslash A / B$ are T_0 for any \hat{g} in $(G')^i$, then $\Gamma^i \backslash (G')^i / B$ is T_0 .

In this case, we put $A = \widetilde{\Gamma}_{l-1} \times \Gamma = \{(\gamma, \dots, \gamma, \gamma') \in \Gamma^l\}$ and $B = \widetilde{\Gamma}_l$. Then easily we get, $\Gamma^l \backslash (G')^l / \widetilde{\Gamma}_{l-1} \times \Gamma \sim \Gamma^{l-1} \backslash (G')^{l-1} / \widetilde{\Gamma}_{l-1} \times \Gamma \backslash G' / \Gamma$ and $\widehat{g}\Gamma^l \widehat{g}^{-1} \cap A \backslash A / B \sim \Gamma^{l-1} (\widehat{g}) \times \Gamma^{1} (g_l) \backslash \Gamma \times \Gamma / \widetilde{\Gamma}_2 \sim \Gamma^{l-1} (\widehat{g}) \backslash \Gamma / \Gamma^{1} (g_l)$, where $\Gamma^{l-1} (\widehat{g}) = \Gamma \cap g_1 \Gamma g_1^{-1} \cap g_2 \Gamma g_2^{-1} \cap \cdots \cap g_{l-1} \Gamma_{g_{l-1}}^{-1}$, and $\Gamma^{1} (g_l) = g_l \Gamma g_l^{-1} \cap \Gamma$, for $\widehat{g} = (g_1, g_2, \dots, g_l)$ in $(G')^l$. Consequently, if we prove $\Gamma^{l-1} (\widehat{g}) \backslash \Gamma / \Gamma^{1} (g_l)$ is T_0 , then by the induction with respect to l, we get the proof.

Now we shall show that $\Gamma^{i}(g)$ is conjugate to MH in Γ for any