56. A Duality Theorem for Locally Compact Groups. IV

By Nobuhiko TATSUUMA

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

1. As a sequel of the previous articles $[1] \sim [3]$, the present paper is devoted to prove the duality theorem which is same as shown in [3], for certain class of locally compact semi-direct product G of a separable closed abelian normal subgroup N and a closed subgroup K satisfying the assumptions $1 \sim 4$. These class contains the motion group on \mathbb{R}^n , the *n*-dimensional inhomogeneous Lorentz group, and the transformation group of straight line.

We call an operator field $T = \{T(D)\}$ over the set Ω_0 of all equivalence classes (representative $D = \{U_g^p, \mathfrak{H}^p\}$) of irreducible unitary representations of G admissible when

(1) T(D) is a unitary operator in \mathfrak{H}^p for any D in Ω_0 .

(2) For any irreducible decomposition $\int D^{\lambda} d\nu(\lambda)$ of $D_1 \otimes D_2$ which is related by U,

$$U(T(D_1) \otimes T(D_2)) U^{-1} = \int T(D^{\lambda}) d
u(\lambda)$$
 .

The main proposition of this paper is as follows.

Proposition. For any admissible operator field T, there exists unique element g in G such that

 $T(D) = U_g^D$ for any D in Ω_0 .

2. [Assumption 1] G is a regular semi-direct product in the sense of Mackey [4].

Consider the dual group \hat{N} of abelian group N, then g in G gives a transformation $g(\hat{n})$ on \hat{N} defined by

$$\langle g(\hat{n}), n \rangle = \langle \hat{n}, g^{-1}ng \rangle$$
,

where brackets show ordinary dual relation between N and \hat{N} . We choose a representative \hat{n} in given G-orbit L in \hat{N} , and let the isotropy group of \hat{n} in G be $G(\hat{n})$, then $G(\hat{n})$ is a semi-direct product of N and a subgroup $K(\hat{n})$ in K.

For any irreducible unitary representation $\tau = \{W_k^{\tau}, \mathfrak{H}^{\tau}\}$ of $K(\hat{n})$ consider the representation $D(\hat{n}, \tau)$ of G induced by the representation $\{\langle \hat{n}, n \rangle W_k^{\tau}, \mathfrak{H}^{\tau}\}$ of $G(\hat{n})$ (g=nk).

From Mackey's results ([4] Th. 14.1 and 2), $D(\hat{n}, \tau)$ is irreducible and determined by L and τ besides unitary equivalence, and arbitrary irreducible unitary representation of G is given in this form.