54. Connection of Topological Fibre Bundles. II

By Akira Asada

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

In his note [2], the author defined the connection forms for an arbitrary topological fibre bundle $\hat{\xi}$ to be an element in $C^1(X_d, G)$ such that $s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b$, where X_d is the total space of the principal bundle of $\hat{\xi}$, and a, b are elements of G, the structure group of $\hat{\xi}$. There, first we define the obstruction class for the existence of (topological) connection forms (of. [3]). Next we consider a relation between the topological curvature forms of complex vector bundles and their complex Chern classes (cf. [5]). We use the same notations as [2] in this note. For example, we denote $C^1(X_d, G)_d = \{s \mid s \in C^1(X_d, G), s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b, a, b \in G\}, T^2(X_d, G) = \{s \mid s \in C^2(X_d, G), s(\alpha a, \beta b, \gamma c) = b^{-1}s(\alpha, \beta, \gamma)b, a, b, c \in G\}.$

1. Obstruction class for the existence of topological connection forms. We denote by $X_{\mathfrak{G}}$ the total space of the principal bundle associated to a topological *G*-bundle \mathfrak{E} over X, π the projection of $X_{\mathfrak{G}}$ to X. If U is a coordinate neighborhood of \mathfrak{E} then, by lemma 4 of [2], $C^1(\pi^{-1}(U), G)_{\mathfrak{G}}$ is not an empty set and we obtain by the corollary of theorem 2 in [2]

(1) $C^{1}(\pi^{-1}(U), G)_{g} = T^{1}(\pi^{-1}(U), G)s,$

where s is a connection form of $\xi \mid U$.

On X_{q} , we set

 S^1 : the sheaf of germs of elements of $C^1(\pi^{-1}(U), G)_{d}$,

 \mathcal{I}^i : the sheaf of germs of elements of $T^i(\pi^{-1}(U), G), i=1, 2$.

If we regard S^1 and \mathcal{I}^i to be sheaves on X, then we denote them by $S^1_{\xi}, \mathcal{I}^i_{\xi}$ and call that S^1_{ξ} is the connection sheaf and $\delta_1 S^1_{\xi}$ is the curvature sheaf of ξ .

Since $T^i(\pi^{-1}(U), G)$ are groups, \mathcal{I}^i are sheaves of groups for i=1, 2, but \mathcal{S}^1 is only a sheaf of sets. But by (1), if $s_{\mathcal{V}}$ belongs to $H^0(\pi^{-1}(U), \mathcal{S}^1)$, then $s_{\mathcal{V}}s_{\mathcal{V}}^{-1}$ belongs to $H^0(\pi^{-1}(U \cap V), \mathcal{I}^1)$ and we get

Lemma 1. The class of $\{s_{v}s_{v}^{-1}\}$ in $H^{1}(X_{g}, \mathcal{I}^{1})$ does not depend on the choice of $\{s_{v}\}$.

Definition. The class of $\{s_{\sigma}s_{r}^{-1}\}$ in $H^{1}(X_{\sigma}, \mathcal{I}^{1})$ is called the obstruction class for the existence of (topological) connection of ξ and denoted by $o(\xi)$.

Theorem 1. ξ has a connection form if and only if $o(\xi)$ is equal to 1 in $H^1(X_{\mathfrak{g}}, \mathfrak{T}^1)$.