71. On Holomorphic Markov Processes

By Kôsaku Yosida

Department of Mathematics, University of Tokyo

(Comm. by Zyoiti SUETUNA, M.J.A., April 12, 1966)

Under appropriate regularity conditions, a temporally homogeneous Markov process is associated with a contraction semi-group $\{T_t; t \ge 0\}$ of class (C_0) [1] in a suitable Banach space X. In certain cases where X are complex Banach spaces, T_t admits a holomorphic extension T_{λ} given by strongly convergent Taylor series for all $x \in X$:

(1)
$$T_{\lambda}x = \sum_{n=0}^{\infty} \frac{(\lambda-t)^n}{n!} T_t^{(n)}x$$
 for $\frac{|\lambda-t|}{t} \leq \text{some positive constant } C$,

the existence of the *n*-th strong derivative $T_t^{(n)}x$ in x of T_tx being assumed for any t>0 and any $x \in X$ $(n=1, 2, \dots)$. Such is the case of the semi-group

$$(2) (T_t f)(x) = (2\pi t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-|x-y|^2/2t} f(y) dy (t>0), \\ = f(x) (t=0)$$

in the Banach space $C[-\infty, \infty]$ of bounded uniformly continuous, complex valued functions f(x) on $(-\infty, \infty)$ endowed with the maximum norm. Suggested by this example, we shall call a Markov process a holomorphic Markov process if the associated semi-group T_t admits a holomorphic extension T_t of the form given in (1). This notion seems to be of some interest. For instance, we can prove

Proposition. Let a semi-group T_t with the infinitesimal generator A be associated with a holomorphic Markov process through

$$(3) \qquad (T_t f)(x) = \int P(t, x, dy) f(y), \qquad f \in X$$

where P(t, x, dy) is the transition probability of this process. Suppose that $T_{t_0}f_0=0$ for some $t_0>0$ and $f_0\in X$. Then $f_0=0$.

Proof. We have $A^n T_{t_0} f_0 = T_{t_0}^{(n)} f_0 = 0$ $(n=0, 1, \cdots)$ by the linearity of A. Hence, by Taylor expansion (1), we see that $T_{\lambda} f_0 = 0$ for $|\lambda - t|/t \leq C$. Repeating the argument, we easily see that $T_t f_0 = 0$ for all t > 0 and so $f_0 = s - \lim_{t \neq 0} T_t f_0 = 0$.

There are abundant examples of holomorphic Markov processes. In fact, the fractional power [2] \hat{A}_{α} (0< α <1) of the infinitesimal generator A of a contraction semi-group T_t of class (C_0) generates a construction semi-group $\hat{T}_{t,\alpha}$ of class (C_0) which admits a holomor-