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In this paper, to take away the notion of covering system and
we consider about the completion theory of topological space with
a set consisting of some filters instead of Cauchy filters concerning
covering system.

Thus, we get a generalization of author’s paper [5, but using
method is not different almost at all.

By this generalization, Alexandroff one point compactification is
included, as a special case, in the completion.

A family consisting of subsets of X is a filter base in X if
for every A, Be[,C_AB for some Ce[ and fe.

A filter [ in Xis a filter base in X such that if AB and
Be then Ae.

For every filter base in X, the family {AIXAB, Be [} is
a filter in X, that is said to be generated by [.

If X*X then a filter in X is a filter base in X* and generates
a filter in X*. Denote it by [*.

In a topological space X, let’s denote by 92(x), the neighborhood
system of x e X, and by (R)(X), the family of all open sets of X.

A filter base in a topological space X converges to x in X if
and only if the filter generated by contains the neighborhood system
(x) of x.

For a filter base in a topological space X, {G]Ge (R)(X), G_A,
A e } is a filter base, so generates a filter, we will denote it by .
Thus [ converges to x if and only if [ converges to x.

We consider a topological space X, with a set M consisting of
some filters that satisfies the following three conditions
M1) if eM and fl_ then eM,
M2) if eMthen [eM,
M3) for all point x of X, (x) e M.

Let’s denote such a topological space X, by (X; M). In (X; M),
if eMconverges to no point, then [ is a leg. If (X;M) has no
leg, (X; M) is complete.

A completion (X*; M*) of a space (X; M) is such a space that
C1) XGX*,


