98. On Kernels of Invariant Functional Spaces

By Masayuki Itô

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., May 12, 1966)

Introduction. Deny introduced in [6] the notion of invariant functional spaces and he proved that to an invariant functional space \mathfrak{X} corresponds a convolution kernel κ in the following sense: each potential u_f in \mathfrak{X} generated by a bounded measurable function f with compact support is equal to the convolution $\kappa * f$. In this paper, we shall prove that the converse is valid. That is, for a positive measure κ of positive type, there exists an invariant functional space with kernel κ . Furthermore we shall give a necessary and sufficient condition for a positive measure κ of positive type to be the kernel of a special Dirichlet space.

1. Invariant functional spaces. Let X be a locally compact abelian group. We denote by dx the Haar measure of X. We define two kinds of functional spaces on X.

Definition 1. A weak invariant functional space $\mathfrak{X}=\mathfrak{X}(X)$ with respect to X and dx is a Hilbert space of real valued locally summable functions satisfying the following two conditions.

(1.1) For any compact subset K in X, there exists a positive constant A(K) such that

$$\left|\int_{\kappa} u(x)dx\right| \leq A(K)||u||$$

for any u in \mathfrak{X} .

(1.2) Let $U_x u$ be a function obtained from u in \mathfrak{X} by the translation $x \in X$. For any u in \mathfrak{X} and any x in X, $U_x u$ is in \mathfrak{X} and $||U_x u|| = ||u||$.

Two functions which are equal $p.p.^{1}$ in X represent the same element in \mathfrak{X} . By the condition (1.1), for any compact subset K in X, there exists an element u_{κ} in \mathfrak{X} such that

$$(u, u_{\kappa}) = \int_{\kappa} u(x) dx$$

for any u in \mathfrak{X} . Especially when $u_{\kappa}(x) \ge 0$ p.p. in X for any compact subset K, \mathfrak{X} is called a positive weak invariant functional space on X.

Definition 2.²⁾ A weak invariant functional space \mathfrak{X} is called

2) Cf. [6], p. 12.

¹⁾ A property is said to hold p.p. in a subset E in X if the property holds in E except a set which is locally of measure zero.