162. Boundary Value Problems for the Helmholtz Equations. I
 The Case of Coaxial Circular Arcs

By Yoshio Hayashi
Department of Mathematics, College of Science and Engineering,
Nihon University, Tokyo

(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1966)

1. Let (r, θ) be polar coordinates in a plane and let S_{j} be domains defined by $S_{1} ; r<a_{1}, S_{j} ; a_{j-1}<r<a_{j},(j=2,3, \cdots, \nu), S_{\nu+1}$; $a_{\nu}<r .\left(a_{1}<a_{2}<\cdots<a_{\nu}\right)$. Suppose that, for each $j=1,2, \cdots, \nu, L_{j}$ is a union of arbitrary (but finite) number of circular arcs of arbitrary width and of radius a_{j}, and that L_{j}^{c} is the complement of L_{j} with respect to the whole circle $r=a_{j}$. Then, our problems are stated as follows; Find functions $u_{j}(r, \theta)$ in S_{j} such that their partial derivatives of the second order are continuous in S_{j} excepting given points $x_{j}^{*} \in S_{j}$, that u_{j} and $\partial u_{j} / \partial r$ are Hölder continuous in the closure of S_{j}, and that they satisfy
(1) $\quad \Delta u_{j}+k_{j}^{2} u_{j}=f_{j} \delta\left(x, x_{j}^{*}\right), \quad x \in S_{j}, x_{j}^{*} \in S_{j}, \quad(j=1,2, \cdots, \nu+1)$
(2) u and $\frac{\eta}{k} \frac{\partial u}{\partial r}$ are continuous when they traverse L_{j}^{c}.

$$
\begin{equation*}
\lim \cdot r^{\frac{1}{2}}\left\{\frac{\partial u_{\nu+1}}{\partial r}+i k_{\nu+1} u_{\nu+1}\right\}=0, \quad r \rightarrow \infty \tag{3}
\end{equation*}
$$

and
(4) $u_{j}=0$ on $L_{j-1}+L_{j},(j=2,3, \cdots, \nu), u_{1}=0$ on L_{1} and $u_{\nu+1}=0$ on L_{ν}, or
$(4)^{\prime} \quad \frac{\partial u_{j}}{\partial r}=0$ on $L_{j-1}+L_{j}, \quad(j=2,3, \cdots, \nu)$,

$$
\frac{\partial u_{1}}{\partial r}=0 \text { on } L_{1} \text { and } \frac{\partial u_{\nu+1}}{\partial r}=0 \text { on } L_{\nu},
$$

where Δ is the two-dimensional Laplace operator and $k_{j}(j=$ $1,2, \cdots, \nu+1$) are complex constants where $\operatorname{Im} \cdot k_{j} \leqq 0 . \quad \eta=\eta_{j}$ and f_{j} are given complex constants where f_{j} may include zero but $\eta_{j} \neq 0$. These are the simultaneous boundary value problems for the Helmholtz equations in contiguous domains bounded by circular arcs, in which the parameters k_{j} are not necessarily uniform. They are a generalization of the boundary value problem for the single Helmholtz equation, and is also a generalization of the theory of electromagnetic fields in a uniform medium bounded by circular arcs

