162. Boundary Value Problems for the Helmholtz Equations. I

The Case of Coaxial Circular Arcs

By Yoshio HAYASHI

Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

1. Let (r, θ) be polar coordinates in a plane and let S_j be domains defined by S_1 ; $r < a_1$, S_j ; $a_{j-1} < r < a_j$, $(j=2, 3, \dots, \nu)$, $S_{\nu+1}$; $a_{\nu} < r$. $(a_1 < a_2 < \dots < a_{\nu})$. Suppose that, for each $j=1, 2, \dots, \nu$, L_j is a union of arbitrary (but finite) number of circular arcs of arbitrary width and of radius a_j , and that L_j^c is the complement of L_j with respect to the whole circle $r=a_j$. Then, our problems are stated as follows; Find functions $u_j(r, \theta)$ in S_j such that their partial derivatives of the second order are continuous in S_j excepting given points $x_j^* \in S_j$, that u_j and $\partial u_j / \partial r$ are Hölder continuous in the closure of S_j , and that they satisfy

(1)
$$\Delta u_j + k_j^2 u_j = f_j \delta(x, x_j^*), \quad x \in S_j, \ x_j^* \in S_j, \qquad (j = 1, 2, \dots, \nu + 1)$$

(2) u and $\frac{\eta}{k} \frac{\partial u}{\partial r}$ are continuous when they traverse L_j^c .

$$(3) \qquad \qquad \lim \cdot r^{\frac{1}{2}} \left\{ \frac{\partial u_{\nu+1}}{\partial r} + i k_{\nu+1} u_{\nu+1} \right\} = 0, \qquad r \to \infty,$$

and

(4) $u_j=0$ on $L_{j-1}+L_j$, $(j=2,3,\dots,\nu)$, $u_1=0$ on L_1 and $u_{\nu+1}=0$ on L_{ν} , or

(4)'
$$\frac{\partial u_j}{\partial r} = 0$$
 on $L_{j-1} + L_j$, $(j=2, 3, \dots, \nu)$,
 $\frac{\partial u_1}{\partial r} = 0$ on L_1 and $\frac{\partial u_{\nu+1}}{\partial r} = 0$ on L_{ν} ,

where Δ is the two-dimensional Laplace operator and k_j $(j = 1, 2, \dots, \nu+1)$ are complex constants where $\operatorname{Im} \cdot k_j \leq 0$. $\eta = \eta_j$ and f_j are given complex constants where f_j may include zero but $\eta_j \neq 0$. These are the simultaneous boundary value problems for the Helmholtz equations in contiguous domains bounded by circular arcs, in which the parameters k_j are not necessarily uniform. They are a generalization of the boundary value problem for the single Helmholtz equation, and is also a generalization of the theory of electromagnetic fields in a uniform medium bounded by circular arcs