157. On J-Groups of Spaces which are Like Projective Planes

By Seiya Sasao
Department of Mathematics, Tokyo Woman's Christian College, Tokyo

(Comm. by Zyoiti Suetuna, m.J.A., Sept. 12, 1966)
Let K be a $C W$-complex obtained from attaching a $2 n$-cell $V^{2 n}$ to the n-sphere S^{n} by a map $f: S^{2 n-1} \rightarrow S^{n}$. We call K a space which is like real, complex, quaternian, Cayley projective plane in accordance with $n=1,2,4,8$. Our purpose is to calculate J-groups of $K^{(*)}$. Since J-group of a space is determined by its homotopy type we shall use the following notations:

$$
\begin{array}{lll}
P_{R}(m)=S^{1} f^{f} e^{2}, & (f) \in \pi_{1}\left(S^{1}\right)=Z[\iota], & (f)=m[\iota] \\
P_{\sigma}(m)=S^{2} f^{f} e^{4}, & (f) \in \pi_{3}\left(S^{2}\right)=Z[h], & (f)=m[h] \\
P_{Q}(m, n)=S^{4} f^{f} e^{8}, & (f) \in \pi_{7}\left(S^{4}\right)=Z[\nu]+Z_{12}[\tau], & (f)=m[\nu]+n[\tau] \\
P_{K}(m, n)=S^{8} f^{16},(f) \in \pi_{15}\left(S^{8}\right)=Z[\sigma]+Z_{120}[\rho], & (f)=m[\sigma]+n[\rho]
\end{array}
$$

where $[\iota],[h],[\nu],[\tau],[\sigma],[\rho]$ are the generators of respective homotopy groups and $\left[\iota_{,} \iota_{8}\right]=2[h]+[\tau],\left[\iota_{8}, \iota_{8}\right]=2[\sigma]+\rho$.

For example $P_{R}(2), P_{\sigma}(1), P_{Q}(1,0), P_{K}(1,0)$ have respectively the same homotopy type as real, complex, quaternion, Cayley projective planes. Now let $\widetilde{K O}(X)$ denote the abelian group formed by all stable real vecter bundles over X. Then there exists the natural onto-homomorphism $J: \widetilde{K O}(X) \rightarrow J(X)$ by the definition of $J(X)$. Hence in order to determine $J(X)$ it is sufficient to calculate $\widetilde{K O}(X)$ and the kernel of J.

1. Case of $P_{R}(m)$. If m is odd we have $\widetilde{K O}\left(P_{R}(m)\right)$ is trivial and therefore $J\left(P_{R}(m)\right.$) is also trivial. If m is even we have $J^{-1}(0)=0$ by the following

Lemma 1. The commutative diagram is exact:

(*) J. F. Adames: On the group $J(X)-1$, Topology, Vol. 2 (1963).

