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Theorem 66. For each value of 3"-1, 2, let {t’}=,, be a
bounded infinite set of complex numbers; let D be a bounded, closed,
and connected domain such that the closure {} has not any point
in common with it; let N be a bounded normal operator whose point
spectrum and continuous spectrum are given by {(} and
{(} @D respectively (in fact, there exist such N(j-1, 2) as we
have already demonstrated); let

Z(2)- ((2I-N)-h, g) ( e {2L’}UD, lm, j-l, 2),
=1

where when m<h and g are arbitrarily given elements in the
complex abstract Hilbert space under consideration, whereas when

m-{h} are so chosen as to satisfy the condition {I (2I-
N)- ][ [ h ]] < for any 2 e {} UD (this is possible); let U(2)
=R(2)+Z(2) where R(2) is an integral function; and let F be a
rectifiable closed Jordan curve containing the sets {L)}OD and
{2)} D inside itself. Then

(54) 1 U(2)U(2)d2- (R-)(N)h’ g) + (R"-)(N)h’ g)
2zi r -: (-l)! -= (-1)1

(lm#, j--l, 2),
the complex line integral along P being taken counterclockwise; and
moreover the two series on the right both are absolutely convergent
when m-(j=l, 2). If, in addition to those hypotheses, there
exists a rectifiable closed Jordan curve C such that {)UD lies
inside C while {)}uD lies outside C, then

(55) a:) =0

(lm, j--l, 2).
Proof. Since

1 I R(,)R:(,)d2=O
27i r

and since, as can be found from the Cauchy theorem and the ex-

pansions of Z e (j=l, 2) shown in the preceding papers,


