199. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XXIV

By Sakuji INOUE

Faculty of Science, Kumamoto University

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1966)

Theorem 66. For each value of j=1, 2, let $\{\lambda_{\nu}^{(j)}\}_{\nu=1,2,3,\dots}$ be a bounded infinite set of complex numbers; let D_j be a bounded, closed, and connected domain such that the closure $\{\lambda_{\nu}^{(j)}\}\$ has not any point in common with it; let N_j be a bounded normal operator whose point spectrum and continuous spectrum are given by $\{\lambda_{\nu}^{(j)}\}\$ and $[\{\overline{\lambda_{\nu}^{(j)}}\}-\{\lambda_{\nu}^{(j)}\}]\cup D_j$ respectively (in fact, there exist such $N_j(j=1,2)$ as we have already demonstrated); let

$$\chi_j(\lambda) = \sum_{\alpha=1}^{m_j} ((\lambda I - N_j)^{-lpha} h_{jlpha}, g_j) \quad (\lambda \notin \overline{\{\lambda_{\nu}^{(j)}\}} \cup D_j, 1 \leq m_j \leq \infty, j = 1, 2),$$

where when $m_j < \infty h_{j\alpha}$ and g_j are arbitrarily given elements in the complex abstract Hilbert space \mathfrak{H} under consideration, whereas when $m_j = \infty \{h_{j\alpha}\}_{\alpha \geq 1}$ are so chosen as to satisfy the condition $\sum_{\alpha=1}^{\infty} || (\lambda I - N_j)^{-1} ||^{\alpha} || h_{j\alpha} || < \infty$ for any $\lambda \notin \{\overline{\lambda_{\nu}^{(j)}}\} \cup D_j$ (this is possible); let $U_j(\lambda) = R_j(\lambda) + \chi_j(\lambda)$ where $R_j(\lambda)$ is an integral function; and let Γ be a rectifiable closed Jordan curve containing the sets $\{\overline{\lambda_{\nu}^{(1)}}\} \cup D_1$ and $\{\overline{\lambda_{\nu}^{(2)}}\} \cup D_2$ inside itself. Then

(54)
$$\frac{1}{2\pi i} \int_{\Gamma} U_1(\lambda) U_2(\lambda) d\lambda = \sum_{\alpha=1}^{m_1} \frac{(R_2^{(\alpha-1)}(N_1)h_{1\alpha}, g_1)}{(\alpha-1)!} + \sum_{\alpha=1}^{m_2} \frac{(R_1^{(\alpha-1)}(N_2)h_{2\alpha}, g_2)}{(\alpha-1)!} (1 \le m_j \le \infty, j=1, 2),$$

the complex line integral along Γ being taken counterclockwise; and moreover the two series on the right both are absolutely convergent when $m_j = \infty (j=1, 2)$. If, in addition to those hypotheses, there exists a rectifiable closed Jordan curve C such that $\{\overline{\lambda_{\nu}^{(1)}}\} \cup D_1$ lies inside C while $\{\overline{\lambda_{\nu}^{(2)}}\} \cup D_2$ lies outside C, then

(55)
$$\sum_{\alpha=1}^{m_1} \frac{(\chi_2^{(\alpha-1)}(N_1)h_{1\alpha}, g_1)}{(\alpha-1)!} + \sum_{\alpha=1}^{m_2} \frac{(\chi_1^{(\alpha-1)}(N_2)h_{2\alpha}, g_2)}{(\alpha-1)!} = 0$$

$$(1 \le m_j \le \infty, j = 1, 2).$$

Proof. Since

$$rac{1}{2\pi i}\!\int_{arGamma}\!R_{\scriptscriptstyle 1}(\lambda)R_{\scriptscriptstyle 2}(\lambda)d\lambda\!=\!0$$

and since, as can be found from the Cauchy theorem and the expansions of $\chi_i \left(\frac{\rho}{\kappa} e^{i\theta}\right)(j=1,2)$ shown in the preceding papers,