199. Some Applications of the FunctionalRepresentations of Normal Operators in Hilbert Spaces. XXIV
 By Sakuji Inoue
 Faculty of Science, Kumamoto University
 (Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1966)

Theorem 66. For each value of $j=1,2$, let $\left\{\lambda_{\nu}^{(j)}\right\}_{\nu=1,2,3}, \ldots$ be a bounded infinite set of complex numbers; let D_{j} be a bounded, closed, and connected domain such that the closure $\overline{\left\{\lambda_{\nu}^{(j)}\right\}}$ has not any point in common with it; let N_{j} be a bounded normal operator whose point spectrum and continuous spectrum are given by $\left\{\lambda_{\nu}^{(j)}\right\}$ and $\left[\left\{\overline{\left.\lambda_{\nu}^{(j)}\right\}}-\right.\right.$ $\left.\left\{\lambda_{i}^{(j)}\right\}\right] \cup D_{j}$ respectively (in fact, there exist such $N_{j}(j=1,2)$ as we have already demonstrated); let

$$
\chi_{j}(\lambda)=\sum_{\alpha=1}^{m_{j}}\left(\left(\lambda I-N_{j}\right)^{-\alpha} h_{j \alpha}, g_{j}\right) \quad\left(\lambda \notin \overline{\left\{\lambda_{\nu}^{(j)}\right\}} \cup D_{j}, 1 \leqq m_{j} \leqq \infty, j=1,2\right),
$$

where when $m_{j}<\infty h_{j \alpha}$ and g_{j} are arbitrarily given elements in the complex abstract Hilbert space \mathfrak{S} under consideration, whereas when $m_{j}=\infty\left\{h_{j \alpha}\right\}_{\alpha \geq 1}$ are so chosen as to satisfy the condition $\sum_{\alpha=1}^{\infty} \|(\lambda I-$ $\left.N_{j}\right)^{-1}\left\|^{\alpha}\right\| h_{j \alpha} \|<\infty$ for any $\lambda \notin\left\{\overline{\left.\lambda_{\nu}^{(j)}\right\}} \cup D_{j}\right.$ (this is possible); let $U_{j}(\lambda)$ $=R_{j}(\lambda)+\chi_{j}(\lambda)$ where $R_{j}(\lambda)$ is an integral function; and let Γ be a rectifiable closed Jordan curve containing the sets $\overline{\left\{\lambda_{i}^{(1)}\right\}} \cup D_{1}$ and $\left\{\lambda_{\nu}^{(2)}\right\} \cup D_{2}$ inside itself. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\Gamma} U_{1}(\lambda) U_{2}(\lambda) d \lambda=\sum_{\alpha=1}^{m_{1}} \frac{\left(R_{2}^{(\alpha-1)}\left(N_{1}\right) h_{1 \alpha}, g_{1}\right)}{(\alpha-1)!}+\sum_{\alpha=1}^{m_{2}} \frac{\left(R_{1}^{(\alpha-1)}\left(N_{2}\right) h_{2 \alpha}, g_{2}\right)}{(\alpha-1)!} \tag{54}
\end{equation*}
$$

$$
\left(1 \leqq m_{j} \leqq \infty, j=1,2\right)
$$ the complex line integral along Γ being taken counterclockwise; and moreover the two series on the right both are absolutely convergent when $m_{j}=\infty(j=1,2)$. If, in addition to those hypotheses, there exists a rectifiable closed Jordan curve C such that $\left\{\overline{\lambda_{\nu}^{(1)}}\right\} \cup D_{1}$ lies inside C while $\left\{\overline{\chi_{\nu}^{(2)}}\right\} \cup D_{2}$ lies outside C, then

$$
\begin{equation*}
\sum_{\alpha=1}^{m_{1}} \frac{\left(\chi_{2}^{(\alpha-1)}\left(N_{1}\right) h_{1 \alpha}, g_{1}\right)}{(\alpha-1)!}+\sum_{\alpha=1}^{m_{2}} \frac{\left(\chi_{1}^{(\alpha-1)}\left(N_{2}\right) h_{2 \alpha}, g_{2}\right)}{(\alpha-1)!}=0 \tag{55}
\end{equation*}
$$

$$
\left(1 \leqq m_{j} \leqq \infty, j=1,2\right)
$$

Proof. Since

$$
\frac{1}{2 \pi i} \int_{\Gamma} R_{1}(\lambda) R_{2}(\lambda) d \lambda=0
$$

and since, as can be found from the Cauchy theorem and the expansions of $\chi_{j}\left(\frac{\rho}{\kappa} e^{i \theta}\right)(j=1,2)$ shown in the preceding papers,

