189. On the Absolute Logarithmic Summability of the Allied Series of a Fourier Series

By Fu Yeh

Department of Mathematics, Tsing Hua University, Taiwan, China (Comm. by Zyoiti Suetuna, m.J.A., Oct. 12, 1966)

1. Introduction. §1.1. Definition.*) Let $\lambda=\lambda(w)$ be continuous, differentiable and monotone increasing in $(0, \infty)$, and let it tend to infinity as $w \rightarrow \infty$. For a given series $\sum_{1}^{\infty} a_{n}$, put

$$
C_{r}(w)=\sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r} a_{n} \quad(r \geqslant 0)
$$

Then the series $\sum_{1}^{\infty} a_{n}$ is called to be summable $|R, \lambda, r|(r \geqslant 0)$, if for a positive number A,

$$
\int_{A}^{\infty}\left|d\left[\frac{C_{r}(w)}{\{\lambda(w)\}^{r}}\right]\right|<\infty .
$$

For $r>0$, we have

$$
\frac{d}{d w}\left[\frac{C_{r}(w)}{\{\lambda(w)\}^{r}}\right]=\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n} .
$$

Hence $\sum_{1}^{\infty} a_{n}$ is summable $|R, \lambda, r|(r>0)$, if and only if

$$
\int_{\Delta}^{\infty}\left|\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n}\right| d w<\infty .
$$

§1.2. We suppose that $f(t)$ is integrable in the Lebesgue sense in the interval $(-\pi, \pi)$, and is periodic with period 2π, so that

$$
f(t) \sim \frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(t)
$$

Then the allied series is

$$
\sum_{1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{1}^{\infty} B_{n}(t) .
$$

We write

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}(t)=\frac{1}{\log (2 \pi / t)} \int_{t}^{\pi} \frac{\psi(u)}{u} d u \tag{2}
\end{equation*}
$$

In my thesis [2], I have proved that, if $t^{-1} \psi_{1}(t)\left(\log \frac{2 \pi}{t}\right)^{2}$ is integrable in $(0, \pi)$, then the allied series of the Fourier series of $f(t)$ is summable $|R, \log w, 2|$. The object of the present paper is to prove the following

Theorem. If the integral $\int_{0}^{\pi} t^{-1}\left|d \psi_{1}(t)\right|$ exists, then the allied
*) Mohanty [1].

