223. Some Notes on the Cluster Sets of Meromorphic Functions

By Kikuji MATSUMOTO Mathematical Institute, Nagoya University (Comm. by Kinjirô Kunugi, M.J.A., Nov. 12, 1966)

1. Let D be a domain in the z-plane, Γ its boundary, E a totally disconnected compact set on Γ and z_0 a point of E such that $U(z_0) \cap (\Gamma - E) \neq \emptyset$ for any neighborhood $U(z_0)$ of z_0 . We consider a normal exhaustion $\{F_n\}$ of the complementary domain F of E with respect to the extended z-plane and the graph $0 < u < R, 0 < v < 2\pi$ associated with this exhaustion in Noshiro's sense [3], where R is the length of this graph and may be infinite. The niveau curve u(z) = r(0 < r < R) on F consists of a finite number of closed analytic curves $\gamma_r^{(i)}(i=1, 2, \dots, m(r))$ and we set

$$\Lambda(r) = \max_{1 \leq i \leq m(r)} \int_{\gamma_r^{(i)}} dv.$$

Now suppose that there exists an exhaustion $\{F_n\}$ with the graph satisfying

(1)
$$\limsup_{r \to R} (R-r) \int_{0}^{r} \frac{dr}{\Lambda(r)} = \infty.$$

Then the integral $\int_{0}^{R} \exp\left(2\pi \int_{0}^{r} \frac{dr}{A(r)}\right) dr$ diverges, so that the comple-

mentary domain F of E belongs to the class O_{AB}^{0} (see Kuroda [1]), i.e., E belongs to the class $N_{\mathfrak{B}}^{0}$ in the sense of Noshiro [4]. Therefore, for any single-valued meromorphic function w=f(z) in D, the set $\Omega = C_{D}(f, z_{0}) - C_{\Gamma-E}(f, z_{0})$ is empty or open and each value α belonging to $\Omega - R_{D}(f, z_{0})$ is an asymptotic value of w=f(z) at z_{0} or there is a sequence of points $\zeta_{n} \in E$ tending to z_{0} such that α is an asymptotic value of f(z) at each ζ_{n} . Further $\Omega - R_{D}(f, z_{0})$ is an at most countable union of sets of the class $N_{\mathfrak{B}}$. (These three facts have been proved by Noshiro in his recent paper [4].) We shall restrict our consideration to the case where E is contained in a single boundary component Γ_{0} of Γ . Then we have

Theorem 1. Suppose that Ω is not empty. If E is contained in a single boundary component Γ_0 of Γ and there exists an exhaustion $\{F_n\}$ with the graph satisfying (1), then w=f(z) takes on every value, with two possible exceptions, belonging to any component Ω_n of Ω , infinitely often in the intersection of any neighborhood of z_0 and D.