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1. Introduction and results. We consider the nonstationary
problems

-t- zl + q(x) u(x, t) f(x)e-- (2> 0), 1

u(x, o)-o, s---u(x, o)-o; 2 )’

-t--/ q(x) u(x, t)-O, 1 )’

u(x, o)- fl- -u(x, 0)- ( 2 )
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in 3 Euclidean space R, where q(x) is a real-valued function belonging
to C](R). Furthermore assume that the operator L- A+ q(x) has
no eigenvalue. Here z/ denotes the Laplacian 3/3x+3/x+/3x,
and L is the unique self-adjoint extension in L(R) of z// q defined
on C(R). Then under the conditions imposed on q, L is strictly
positive, and it is known that D(L)-W(R), where W:(R) denotes
the space of functions whose partial derivatives of order<=2 in the
sense of distribution belong to L(R).

Then we have the following
Theorem 1. Suppose that g(x) e C](R), g.(x) e Co(R), and

f(x) e C(RS). Then the following three conditions are equivalent:
) The solution of the problem (1), (2)’ is such that at every

point x e R we have
lira u(x, t)ext-u+(x, 2) (2>0),

where u+(x, 2) denotes lim u(x, 2) and u(x, 2) is the solution of the
+0

equatio
Lu-(2+ie)u+f

ii) The solution of the problem (1)’, (2) is such that at every

point x e R we have
lim u(x, t)-O.

iii) Every solution of the equation (-2+q)u-O, satisfying the

conditions u-O(I x I-), u =0(I x ]-) at infinity is identically zero
3x


