250. On Certain Condition for the Principle of Limiting Amplitude

By Koji Kubota and Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1966)

1. Introduction and results. We consider the nonstationary problems

$$
\begin{gather*}
{\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q(x)\right] u(x, t)=f(x) e^{-i \sqrt{\lambda} t} \quad(\lambda>0),} \tag{1}\\
u(x, 0)=0, \quad \frac{\partial}{\partial t} u(x, 0)=0 ; \tag{2}\\
{\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q(x)\right] u(x, t)=0} \tag{1}\\
u(x, 0)=g_{1}(x), \quad \frac{\partial}{\partial t} u(x, 0)=g_{2}(x) ; \tag{2}
\end{gather*}
$$

in 3 Euclidean space R^{3}, where $q(x)$ is a real-valued function belonging to $C_{0}^{2}\left(R^{3}\right)$. Furthermore assume that the operator $L=-\Delta+q(x)$ has no eigenvalue. Here Δ denotes the Laplacian $\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\partial^{2} / \partial x_{3}^{2}$, and L is the unique self-adjoint extension in $L^{2}\left(R^{3}\right)$ of $-\Delta+q$ defined on $C_{0}^{\infty}\left(R^{3}\right)$. Then under the conditions imposed on q, L is strictly positive, and it is known that $D(L)=W_{2}^{2}\left(R^{3}\right)$, where $W_{2}^{2}\left(R^{3}\right)$ denotes the space of functions whose partial derivatives of order $\leqq 2$ in the sense of distribution belong to $L^{2}\left(R^{3}\right)$.

Then we have the following
Theorem 1. Suppose that $g_{1}(x) \in C_{0}^{2}\left(R^{3}\right), g_{2}(x) \in C_{0}^{1}\left(R^{3}\right)$, and $f(x) \in C_{0}^{1}\left(R^{3}\right)$. Then the following three conditions are equivalent:
i) The solution of the problem (1), (2)' is such that at every point $x \in R^{3}$ we have

$$
\lim _{t \rightarrow \infty} u(x, t) e^{i \sqrt{\lambda} t}=u_{+}(x, \lambda) \quad(\lambda>0)
$$

where $u_{+}(x, \lambda)$ denotes $\lim _{\varepsilon \rightarrow+0} u_{\varepsilon}(x, \lambda)$ and $u_{\varepsilon}(x, \lambda)$ is the solution of the equation

$$
L u=(\lambda+i \varepsilon) u+f .
$$

ii) The solution of the problem (1)', (2) is such that at every point $x \in R^{3}$ we have

$$
\lim _{t \rightarrow \infty} u(x, t)=0
$$

iii) Every solution of the equation $(-\Delta+q) u=0$, satisfying the conditions $u=O\left(|x|^{-1}\right), \frac{\partial u}{\partial x_{k}}=O\left(|x|^{-2}\right)$ at infinity is identically zero

