249. Note on the Representation of Semi-Groups of Non-Linear Operators

By Shinnosuke ÔHARU Waseda University

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1966)

1. Let X be a Banach space and let $\{T(\xi)\}_{\xi\geq 0}$ be a family of non-linear operators from X into itself satisfying the following conditions:

(1) $T(0) = I, T(\xi)T(\eta) = T(\xi + \eta)$ $\xi, \eta \ge 0,$

(2) $|| T(\xi)x - T(\xi)y || \leq || x - y || \qquad \xi > 0, x, y \in X,$

(3) There exists a dense subset D in X such that for each $x \in D$, the right derivative

$$D_{\xi}^{+}T(\xi)x = \lim_{h \to 0+} h^{-1}(T(\xi+h)x - T(\xi)x)$$

exists and it is continuous for $\xi \ge 0$. Then we shall call this family $\{T(\xi)\}_{\xi\ge 0}$ a non-linear contraction semi-group.

Definition. We define the infinitesimal generator A of a non-linear contraction semi-group $\{T(\xi)\}_{\xi\geq 0}$ by

$$4x = \lim_{h \to 0+} A_h x$$

whenever the limit exists, where $A_h = h^{-1}(T(h) - I)$. We denote the domain of A by D(A).

Lately J. W. Neuberger [1] gave the following result: If $\{T(\xi)\}_{\ell\geq 0}$ is a non-linear contraction semi-group,^{*)} then for each $x \in X$ and each $\xi \geq 0$

$$\lim_{k \to \infty} \limsup_{k \to \infty} || (I - (\xi/n)A_{\delta})^{-n}x - T(\xi)x || = 0.$$

It is well known that if $\{T(\xi)\}_{\xi\geq 0}$ is a linear contraction semigroup of class (C_0) , then for each $x \in X$ and each $\xi \geq 0$

$$\lim(I-(\xi/n)A)^{-n}x=T(\xi)x$$

(see [2]). In this paper we shall give the representation of this type for non-linear contraction semi-groups.

The main results are the following

Theorem. Let $\{T(\xi)\}_{\xi\geq 0}$ be a non-linear contraction semi-group and let A be the infinitesimal generator such that $\overline{\Re(I-\xi_0A)}=X$ for some $\xi_0>0$. Then for each $\xi>0$ there exists an inverse operator $(I-\xi A)^{-1}$ and its unique extension $L(\xi)$ onto X, which is a contraction operator, and $T(\xi)$ is represented by

^{*)} In his paper the following condition is assumed:

^{(3)&#}x27; There is a dense subset D of X such that if x is in D, then the derivative $T'(\xi)x$ is continuous with domain $[0, \infty)$.