246. A Note on Multipliers of Ideals in Function Algebras

By Junzo WADA

Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1966)

Let X be a compact Hausdorff space and let C(X) be the algebra of all complex-valued continuous functions on X. By a function algebra we mean a closed (by supremum norm) subalgebra in C(X) containing constants and separating points of X. Recently J. Wells [7] has obtained interesting theorems on multipliers of ideals in function algebras. And especially in the disc algebra A_1 it was shown that for any non-zero closed ideal J in A, $\mathfrak{M}, (J)$ is the set of all H^{∞} -functions continuous on $D \sim F$, where D is the closed unit disc on the complex plane and F is the intersection of the zeros of the functions in J on the unit circle C ([7], Theorem 8). As A_1 is an essential maximal algebra, the question naturally arises: Does a similar theorem hold for arbitrary essential maximal algebra? The main purpose of this note is to answer the question under certain conditions and to give a generalization of the theorem mentioned above (cf. Theorem 2).

1. Let A be a function algebra on a compact Hausdorff space X. Let J be a non-zero closed ideal in A. By a multiplier of J we mean a function φ on $X \sim h(J)$ such that $\varphi J \subset J$, where h(J), the hull of J, is the set of points at which every function in Jvanishes. Every multiplier of J is a bounded continuous function on the locally compact space $X \sim h(J)$. We denote the set of all multipliers of J by $\mathfrak{M}(J)$. M(X) denotes the set of all complex. finite, regular Borel measures μ on X and a $\mu \in M(X)$ is orthogonal to A $(\mu \perp A)$ means $\int f d\mu = 0$ for any $f \in A$. For μ in M(X), μ_F denotes the restriction of μ to F. $C(Y)_{\beta}$ denotes the space of bounded continuous functions on the locally compact space Y under the strict topology β of Buck ([3], [7]). Let A be a function algebra on X and let F be a closed subset of X. Then F is said to have the condition (P) if $\mu_F \perp A$ for every $\mu \perp A$. If F has (P), it is an intersection of peak sets ([4]). Wells [7] has proved the following theorem: $\underline{\mathfrak{M}}(kF)$ is the closure of kF in $C(X \sim F)_{\beta}$ if and only if F has (P), where $kF = \{f \in A: f(F) = 0\}$. Let $F_0 = h(J)$, then $\mathfrak{M}(kF_0, J)$ denotes the set of all functions φ on $X \sim F_0$ such that $\varphi \cdot kF_0 \subset J$. Every function in $\mathfrak{M}(kF_0, J)$ is a bounded continuous