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1. Riemannian manifolds of constant curvature.
Let M be a connected Riemannian manifold with metric tensor

g. We always assume that the dimension n of M is 3. Let V be
the covariant differentiation with respect to the Riemannian connection
associated with g. The curvature tensor field R is given by

R(X, Y)Z-VzVrZ-VrVxZ-
where X, Y, and Z are vector fields on M.

Then we have
1 R(X, Y) / R( Y, X) O,
2 R(X, Y)Z+R(Y, Z)X+R(Z, X) Y=0 (Bianchi’s 1st identity),
3 (VxR)( Y, Z) / (VrR)(Z, X) / (VzR)(X, Y) 0

(Bianchi’s 2nd identity).
The Riemannian curvature tensor field of M, denoted also by

R, is the tensor field of covariant degree 4 defined by
R(X, X, X, X3-g(R(X, X3X, X).

Then R possesses the following properties"
4 R(X, X, X, X)+R(X., X, X, X3-O,

(1’) R(X, X, X, X)/R(X, X, X, X)-O,
5 R(X, X, X, X)-R(X, X, X, X.),

(2’) R(X, X, X, X,) +R(X, X, X, X)/R(X, X, X, X)-0,
(3’) (VxR)(X, X, X, X)/(VxR)(X, X., X,, X)

/ (VxR)(X, X, X, X)-O.
M is a Riemannian manifold of constant curvature if and

only if
6 R(X, Y)Z= k{g( Y, Z)X- g(X, Z) Y}

where k is a constant.
If R and g are the components of the curvature tensor field

and the metric tensor with respect to a local coordinate system,
then the components R. of the Riemannian curvature tensor are
given by

R.--, Rg .
ml

If M is a Riemannian manifold of constant curvature, then

or
R k(gg gg).


