3. A Remark on Components of Ideals in Noncommutative Rings

By Hidetoshi Marubayashi
Department of Mathematics, Yamaguchi University
(Comm. by Kenjiro Shoda, m.J.A., Jan. 12, 1967)

Let R be a noncommutative ring, let A be an ideal ${ }^{1)}$ in R, and let M be a non-empty m-system in the sense of McCoy. ${ }^{2}$ (he right upper and the right lower isolated M-components of A, in the sense of Murdoch, ${ }^{87}$ will be denoted by $U(A, M)$ and $L(A, M)$ respectively. In [3], D. C. Murdoch has obtained the following result:

If the ascending chain condition holds in the residue class ring R / A, then $L^{n}(A, M)^{4)}=U(A, M)$ for some positive integer n.

The aim of this short note is to prove that $n=1$ under an assumption which is weaker than that of Murdoch.

Theorem. Let $S[A, M]$ be the set of right ideal quotients $A B^{-1},{ }^{5)}$ where B runs over all ideals meeting the m-system M. Suppose that R satisfies the ascending chain condition for elements of $S[A, M]$. Then $L(A, M)=U(A, M)$.

Proof. This result will follow from Theorem 5 of [3], if it can be shown that $L(A, M)=L(L(A, M), M)$. By the assumption, there exists a maximal element A_{0} in $S[A, M]$ such that $A_{0}=A B_{0}^{-1}$ for an ideal B_{0} which meets M.
(i) We shall prove that $A_{0}=L\left(A_{0}, M\right)$. Let x be any element of $L\left(A_{0}, M\right)$. Then we have $x R m \subseteq A_{0}$ for some $m \in M$. Hence $x \in A_{0}(m)^{-1}=A\left((m) R B_{0}\right)^{-1}$, where (m) is the principal ideal generated by m. Now we shall show that $(m) R B_{0}$ meets the m-system M. For, if $(m) R B_{0}$ does not meet M, then there exists a prime ideal P, by Lemma 4 of [2], such that $P \supseteq(m) R B_{0}$ and $P \cap M=\phi$. Hence we have $m \in P$ or $B_{0} \subseteq P$. This is a contradiction. Therefore the maximal property of A_{0} implies that $A_{0}=A_{0}(m)^{-1}$. Thus $A_{0} \supseteq L\left(A_{0}, M\right)$. The converse inclusion is obvious. Hence we have $A_{0}=L\left(A_{0}, M\right)$.
(ii) We shall prove that $A_{0}=L(A, M)$. By the definition, we have $A_{0} \subseteq L(A, M)$. Let x be any element in $L(A, M)$. Then we have $x R m \subseteq A$ for some $m \in M$. Thus $x R m \subseteq A_{0}$. Hence we obtain $x \in A_{0}(m)^{-1}$. By the above discussion, it is clear that $A_{0}=A_{0}(m)^{-1}$. We have therefore $A_{0}=L(A, M)$. This completes the proof.

[^0]
[^0]: 1) The term "ideal" will mean "two-sided ideal".
 2) Cf. [2].
 3), 4), 5) Cf. [3].
