No. 2]

29. An Algebraic Formulation of K-N Propositional Calculus. II

By Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 13, 1967)

In his paper [1], K. Iséki defined the NK-algebra. For the details of the NK-algebra, see [1]. The conditions of the NK-algebra are as follows:

a)
$$\sim (p*p)*p=0$$
,

b)
$$\sim p*(q*p)=0$$
,

- c) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,
- d) Let α, β be expressions in this system, then

$$\sim \sim \beta * \sim \alpha = 0$$
 and $\alpha = 0$ imply $\beta = 0$.

In this note, we shall show that a NK-algebra is implied by the following conditions:

1)
$$\sim (p*p)*p=0,$$

2) $p*(\sim p*q)=0,$
3) $\sim \sim (\sim \sim (p*r)* \sim (r*q))* \sim (\sim q*p)=0,$
4) $\sim \sim \beta* \sim \alpha=0$ and $\alpha=0$ imply $\beta=0$, where α, β are expressions in this system. We shall prove that 1)-4) imply b)
In 3), put $p=\beta, q=\alpha, r=\gamma$, then
 $\sim \sim (\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha))* \sim (\sim \alpha*\beta)=0.$
By 4), we have $\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha)=0.$ Then we have the follow-
ings:
A) $\sim \alpha*\beta=0$ implies $\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha)=0,$
B) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
C) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
C) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
In B), put $\alpha=\sim p*\sim p, \beta=\sim p, \gamma=p,$ then
 $\sim (\sim p*\sim p)*\sim p=0, p*(\sim p*\sim p)=0$ imply $\sim p*p=0.$
By 1) and 2) we have
5) $\sim p*p=0.$
In 3), put $q=p,$ then
 $\sim \sim (\sim (p*r)* \sim (r*p))* \sim (\sim p*p)=0.$
By 5) we have
6) $\sim \sim (p*r)* \sim (r*p)=0.$
In 3), put $q=\sim p, p=\sim p, r=\sim \sim p,$ then
 $\sim \sim (\sim (\sim p*\sim \sim p)* \sim (\sim \sim p*\sim p))* \sim (\sim \sim p*\sim p)=0.$
By 5), we have
7) $\sim p*\sim \sim p=0.$
In 6), put $p=\alpha, r=\beta$, then $\sim \sim (\alpha*\beta)* \sim (\beta*\alpha)=0$ implies $\alpha*$
 $\beta=0.$ Hence by 4) we have