23. A Note on Congruences

By F. M. SIOSON

Ateneo de Manila

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 13, 1967)

The object of this note is to give necessary and sufficient conditions when a collection of disjoint non-empty subsets constitute equivalence classes of a congruence (relation) of a universal algebra. This extends previous results by M. Teissier [4] and G. B. Preston [3].

Let A = (A, O) be a universal algebra with operations $O = \{o_i \mid i \in I\}$. Let Σ be the semigroup with identity of functions generated under composition by all unary functions of the forms $o_i(x, a_1, \dots, a_{n_i-1})$, $o_i(a_0, \dots, a_{j-1}, x, a_{j+1}, \dots, a_{n_i-1})$ $(j=1, \dots, n_i-2)$, and $o_i(a_0, \dots, a_{n_i-2},$ x) for some $i \in I$ and some $a_0, a_1, \dots, a_{n_i-1} \in A$. The class of an equivalence relation θ containing the element a will be denoted by a/θ .

From [2] recall the following

Proposition 1. A necessary and sufficient condition for an equivalence relation θ on A in a universal algebra A to be a congruence is that if $(x, y) \in \theta$, then $(\sigma(x), \sigma(y)) \in \theta$ for all $x, y \in A$, and $\sigma \in \Sigma$.

Definition. A subset $S \subseteq A$ is *intact* under an equivalence relation θ on A if and only if $S \times S \subseteq \theta$.

Proposition 2. A subset $S \subseteq A$ is intact under an equivalence relation θ on A if and only if $S \subseteq a/\theta$ for some $a \in A$.

Proof. For self-containment, we shall give a proof. Let S be intact under θ and $a \in S$ so that $S \times S \subseteq \theta$. If $x \in S$, then $(x, a) \in \theta$ or $x \in a/\theta$. Thus $S \subseteq a/\theta$. Conversely, suppose $S \subseteq a/\theta$ for some $a \in A$. If $(x, y) \in S \times S$, so that $x, y \in S$, then $x, y \in a/\theta$ or (x, a), $(y, a) \in \theta$. By reflexivity of θ then $(x, a), (a, y) \in \theta$, and hence $(x, y) \in \theta$ by transitivity. Therefore $S \times S \subseteq \theta$.

Theorem 3. Let A = (A, O) be a universal algebra. The minimum congruence under which each member of a collection S of disjoint non-empty subsets of A is intact is the transitive closure $\theta_S = \bigcup_{i=1}^{U} \theta^i$ of the relation $\theta = \{(x, y) \mid x, y \in \sigma(T) \text{ for some } \sigma \in \Sigma \text{ and some } T \in T\}$, where $T = S \cup \{x\} \mid x \in A \setminus \cup S\}$.

Proof. Observe that the diagonal of $A, \Delta_A \subseteq \theta \subseteq \theta_S$ and $\theta^{-1} = \theta$ so that

$$\theta_{\boldsymbol{S}}^{-1} = \left(\bigcup_{i=1}^{\infty} \theta^{i}\right)^{-1} = \bigcup_{i=1}^{\infty} (\theta^{i})^{-1} = \bigcup_{i=1}^{\infty} (\theta^{-1})^{i} = \bigcup_{i=1}^{\infty} \theta^{i} = \theta_{\boldsymbol{S}}$$