18. On the Absolute Logarithmic Summability of the Allied Series of a Fourier Series

By Fu Yeh
Department of Mathematics, Hsing Hua University, Sintch, Taiwan, China (Comm. by Zyoiti Suetuna, m.J.A., Feb. 13, 1967)

1. Introduction. 1.1. Definition.*) Let $\lambda=\lambda(w)$ be continuous, differentiable and monotone increasing in ($0, \infty$), and let it tend to infinity as $w \rightarrow \infty$. For a given series $\sum_{1}^{\infty} a_{n}$, we put

$$
C_{r}(w)=\sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r} a_{n} \quad(r \geqslant 0) .
$$

Then the series $\sum_{1}^{\infty} a_{n}$ is called to be summable $|R, \lambda, r|(r \geqslant 0)$, if

$$
\begin{equation*}
\int_{\Delta}^{\infty}\left|d\left[\frac{C_{r}(w)}{(w)^{r}}\right]\right|<\infty \tag{1.1.1}
\end{equation*}
$$

for a positive number A.
For $r>0$, and non-integral w, we have

$$
\frac{d}{d w}\left[\frac{C_{r}(w)}{\{\lambda(w)\}^{r}}\right]=\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n} .
$$

Hence $\sum_{1}^{\infty} a_{n}$ is summable $|R, \lambda, r|(r>0)$, if and only if

$$
\begin{equation*}
\int_{\Delta}^{\infty}\left|\frac{r \lambda^{\prime}(w)}{\{\lambda(w)\}^{1+r}} \sum_{n \leqslant w}\{\lambda(w)-\lambda(n)\}^{r-1} \lambda(n) a_{n}\right| d w<\infty . \tag{1.1.2}
\end{equation*}
$$

1.2. We suppose that $f(t)$ is integrable in the Lebesgue sense in the interval $(-\pi, \pi)$, and is periodic with period 2π, so that

$$
\begin{equation*}
f(t) \sim \frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(t) \tag{1.2.1}
\end{equation*}
$$

Then the allied series is

$$
\begin{equation*}
\sum_{1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{1}^{\infty} B_{n}(t) . \tag{1.2.2}
\end{equation*}
$$

We write

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}, \quad \theta(t)=\int_{t}^{\pi} \frac{\psi(u)}{u} d u \tag{1.2.3}
\end{equation*}
$$

The object of the present paper is to prove the following
Theorem. If $t^{-1}|\theta(t)| \log \frac{2 \pi}{t} \in L(0, \pi)$, then (1.2.2) is summable $|R, \log w, 2|$ at $t=x$.
This theorem was conjectured by N. Basu in a stronger form.
2. Proof of the Theorem. 2.1. We write

$$
\begin{equation*}
g(w, t)=\sum_{n<w} \log n\left(\log \frac{w}{n}\right) \sin n t \tag{2.1.1}
\end{equation*}
$$

*) Mohanty (1).

