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Let V=R" and V* its dual. Let M be a differentiable manifold
of dimension n and F(M) the bundle of r-frames of M. The
structure group of F(M) is denoted by G(n). The Lie algebra
(n) of G(n) is V(R) V* + V(R)S(V*)+ + V(R)S(V*).

A transitive graded Lie algebra is, by definition, a Lie
subalgebra - V+g0++... of V+ V(R) V*+ V(R)S(V*)+ ..., with

I V(R)S+I(V*), satisfying

where _1 V.
We call that is of order r if

g+g) for i +j<r
and

+-2 for i>__r and j__>0.

If k_l::0 and fl-0 then is said to be of type k. In general
r<_k+l.

Let Mo-/G be a homogeneous space of dimension n. Suppose
( is a finite dimensional Lie group whose Lie algebra is a transi-
tive graded Lie algebra of order r and of type k:- V+go+..-
where s-Max {r, k}.

We also suppose that G is a closed subgroup of G whose Lie
algebra is given by

Then G can be considered as a subgroup of G’(n).
Definition. Let M be a differentiable manifold of dimension n

and G a subgroup of G’(n) as above. A G-structure Pa(M)of order
r and of type k on M is a reduction of F’(M) to the group G.

Example 1. A2ne structure. Let G be the affine group and
G the isotropy subgroup at the origin so that GIG is the affine
space. Then - V/flI(n)- V+ V(R) V* and fl-flI(n). An affine struc-
ture on M is, by definition, a reduction of F(M) to the group G.
Affine structure is a G-structure of order 2 and of trpe 1.

Example 2. Projective s/ructu, e. Let G be the group of pro-
jective transformations of a real projective space of dimension n and
G the isotropy subgroup at the distinguished point so that GIG is


