58. On the Geometry of G-Structures of Higher Order

By Koichi OGIUE

Department of Mathematics, Tokyo Institute of Technology, Tokyo

(Comm. by Zyoiti SUETUNA, M.J.A., April 12, 1967)

Let $V=R^n$ and V^* its dual. Let M be a differentiable manifold of dimension n and $F^r(M)$ the bundle of r-frames of M. The structure group of $F^r(M)$ is denoted by $G^r(n)$. The Lie algebra $g^r(n)$ of $G^r(n)$ is $V \otimes V^* + V \otimes S^2(V^*) + \cdots + V \otimes S^r(V^*)$.

A transitive graded Lie algebra is, by definition, a Lie subalgebra $\tilde{g} = V + g_0 + g_1 + \cdots$ of $V + V \otimes V^* + V \otimes S^2(V^*) + \cdots$, with $g_i \subset V \otimes S^{i+1}(V^*)$, satisfying

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}$$

where $g_{-1} = V$.

We call that \tilde{g} is of order r if

$$g_{i+j} \subsetneq g_i^{(j)}$$
 for $i+j < r$

and

 $\mathfrak{g}_{i+j} = \mathfrak{g}_i^{(j)}$ for $i \ge r$ and $j \ge 0$.

If $g_{k-1} \neq 0$ and $g_k = 0$ then \tilde{g} is said to be of type k. In general $r \leq k+1$.

Let $M_0 = \tilde{G}/G$ be a homogeneous space of dimension *n*. Suppose \tilde{G} is a finite dimensional Lie group whose Lie algebra \tilde{g} is a transitive graded Lie algebra of order *r* and of type *k*:

 $\widetilde{\mathfrak{g}} = V + \mathfrak{g}_0 + \cdots + \mathfrak{g}_{s-1}$

where $s = Max \{r, k\}$.

We also suppose that G is a closed subgroup of \widetilde{G} whose Lie algebra g is given by

$$g = g_0 + g_1 + \cdots + g_{s-1}$$
.

Then G can be considered as a subgroup of $G^{s}(n)$.

Definition. Let M be a differentiable manifold of dimension n and G a subgroup of $G^{*}(n)$ as above. A G-structure $P_{d}(M)$ of order r and of type k on M is a reduction of $F^{*}(M)$ to the group G.

Example 1. Affine structure. Let \tilde{G} be the affine group and G the isotropy subgroup at the origin so that \tilde{G}/G is the affine space. Then $\tilde{g} = V + \mathfrak{gl}(n) = V + V \otimes V^*$ and $g = \mathfrak{gl}(n)$. An affine structure on M is, by definition, a reduction of $F^2(M)$ to the group G. Affine structure is a G-structure of order 2 and of trpe 1.

Example 2. Projective s^{*t*}ructu.e. Let \tilde{G} be the group of projective transformations of a real projective space of dimension n and G the isotropy subgroup at the distinguished point so that \tilde{G}/G is