102. On Diffeomorphisms of the n-Dis k^{*}

By William A. LABACH Florida State University (Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1967)

1. Introduction. Let D^n denote the closed unit *n*-disk in R^n and let Diff (D^n) denote the group of orientation preserving C^1 diffeomorphisms of D^n onto itself. We show here that, under a suitable topology, the injection $SO(n) \rightarrow Diff(D^n)$ is a weak homotopy equivalence. If follows as a corollary that every orient-ation preserving diffeomorphism of S^n onto itself which extends to a diffeomorphism of D^n is isotopic to the identity through such diffeomorphisms. This partially answers a question of Smale.

In the last section of the paper, we consider Diff (D^{n}) in the C^{1} topology and show that either SO (6) \rightarrow Diff (D^{s}) is not a weak homotopy equivalence or SO (6) is not a deformation retract of Diff (S^{s}) .

2. Preliminaries. Suppose $f \in \text{Diff}(D^n)$, $\varepsilon > 0$, and C is a compact subset of the interior of D^n . Let $W(f, \varepsilon, C)$ denote the set of all $g \in \text{Diff}(D^n)$ such that

and

 $|f(x)-g(x)| < \varepsilon$ for all $x \in D^n$

 $|\partial f_i/\partial x_k(x) - \partial g_i/\partial x_k(x)| < \varepsilon$ for all $x \in C$; $i, k = 1, \dots, n$. We take the sets $W(f, \varepsilon, C)$ as a basis for our special topology on

Diff (D^n) . Let B^n denote the interior of D^n and let Diff (B^n) denote the group of orientation preserving homeomorphisms of B^n in the coarse C^1 topology [6]. Let EDiff (B^n) denote the subset of Diff (B^n) consisting of elements which are extendable to diffeomorphisms of D^n . We endow EDiff (B^n) with the topology it inherits from Diff (B^n) . We let EDiff (D^n) denote the set Diff (D^n) with the topology induced from EDiff (B^n) by the inclusion map $i: B^n \rightarrow D^n$.

Stewart [9] has shown that SO(*n*) is a strong deformation retract of Diff (B^n) . Since EDiff (B^n) is mapped into itself throughout this deformation retraction, we have that SO(*n*) is a strong deformation retract of EDiff (B^n) also.

Let EDiff (S^n) denote the set of orientation preserving diffeomorphisms of S^n onto itself which are extendable to diffeomorphisms of D^n . We give EDiff (S^n) the compact-open topology.

^{*)} This research was partially supported by the National Science Foundation under Grant No. G-5458.