97. The Asymptotic Formula for the Trace of Green Operators of Elliptic Operators on Compact Manifold*

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., June 12, 1967)

§1. Preliminaries. It is interesting to know the asymptotic expansion of the trace of the Green operator $(P+\tau)^{-1}$ of elliptic pseudo-defferential operator P operating on sections of a complex vector bundle X over a compact differentiable manifold M. The asymptotic expansion is obtained by introducing a special class of pseudo-differential operators on $X \otimes \mathbf{1}_{\mathbf{R}^{1}}$, where $\mathbf{1}_{\mathbf{R}^{1}}$ is the trivial line bundle over the real line \boldsymbol{R}^{1}. This is called β-pseudo-differential operator for the time being. Proofs are omitted, but will be published elsewhere.

In the following, we shall follow the usual notations in [1] or [2] for the special spaces of distributions.

The author expresses his hearty thanks to Professor S. Itô who has kindly read through this manuscript with criticism.
$\S 2$. β-pseudo-differential operators. Consider a σ-compact differentiable n-manifold M and a smooth complex vector bundle X of dimension l over M. Let Y be the bundle over $M \times \boldsymbol{R}^{1}$ induced from X by the projection $M \times \boldsymbol{R}^{1} \rightarrow M$. We identify the bundle Y with $X \otimes \mathbf{1}_{\mathbf{R}^{1}}$. We denote the generic point of $M \times \boldsymbol{R}^{1}$ by (x, s). When Z is a vector bundle over a differentiable manifold N, we denote the space of C^{∞} sections (resp. C^{∞} sections with compact support) over an open subset U of N by $\mathcal{E}(U, Z)$ (resp. $\mathscr{D}(U, Z)$). In the following, we denote the annulus $\left\{(\rho, \sigma) \in R^{2}: \frac{1}{2} \leq \rho^{2}+\sigma^{2} \leq 2\right\}$ by A.

Definition 1. A continuous linear map P from $\mathscr{D}(M, X) \widehat{\otimes} \mathcal{S}^{\prime}\left(\boldsymbol{R}^{1}\right)$ into $\mathcal{E}(M, X) \widehat{\otimes} \mathcal{S}^{\prime}\left(R^{1}\right)$ is called a β-pseudo-differential operator of order s_{0}, if there is a sequence $s_{0}>s_{1}>\cdots \rightarrow-\infty$ of reals such that, for all $f \in \mathscr{D}(M, X)$ and $g \in \mathcal{E}(M)$ which is real valued with $d g \neq 0$ on $\operatorname{supp} f, e^{-i \lambda\left(\rho_{\rho}+s \sigma\right)} P\left(f e^{i \lambda(g \rho+s \sigma)}\right)$ is the pull back of a section $p(f, g \rho, x, \sigma)$ of X and there holds the asymptotic expansion

$$
\begin{equation*}
p(f, g \rho, x, \sigma) \sim \sum_{0}^{\infty} p_{j}(f, g \rho, x, \sigma) \lambda^{s_{j}}, \quad \lambda \rightarrow \infty \tag{2.1}
\end{equation*}
$$

which has the following property: For any integer $N>0$ and com-

[^0]
[^0]: *) This research was partly supported by The Sakkokai Foundation.

