95 A Note on the Analyticity in Time and the Unique Continuation Property for Solutions of Diffusion Equations

By Kyûya Masuda

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., June 12, 1967)

1. Introduction. Consider the equation of evolution in $L^2(G)$ (1) $du/dt = Au, \quad t > 0,$

where G is a domain in \mathbb{R}^n . We assume that A is an infinitesimal generator of holomorphic semi-groups S(t) with the domain D(A) of $A \supset C_0^{\infty}(G)$, and that $A\varphi = \sum_{i,j=1}^n a_{ij}(x)\partial^2 \varphi/\partial x_i \partial x_j + \sum_{j=1}^n a_j(x)\partial \varphi/\partial x_j + a(x)\varphi(\equiv A\varphi)$ for $\varphi \in C_0^{\infty}(G)$ where the coefficients satisfy the following conditions: $a_{ij}(x)$ are functions of class C^2 and with second derivatives locally Hölder continuous, i.e., $a_{ij}(x) \in C_{loc}^{2+h}(G)(0 < h < 1), a_j(x)$ are of C^1 , and a(x) of $C_{loc}^h(G)$; the matrix $\{a_{ij}(x)\}$ is positive definite everywhere in G. The purpose of this note is to show the following theorems.

Theorem 1. For any $f \in L^2(G)$, there exists a function u(x, t)in $C_{los}^{2+h}(G \times (0, \infty))$ such that for any fixed t > 0 u(x, t) = S(t)f(x)after a correction of a null set of the space \mathbb{R}^n . Moreover, for any fixed x in G, u(x, t) is analytic in t.

Theorem 2. Let f be in $L^2(G)$. If for a fixed $t_0 > 0$, $S(t_0)f(x) = 0$ for almost every x in some nonempty open subset U of G, then S(t)f vanishes identically in $G \times (0, \infty)$.

The regularity of semi-group solutions of the diffusion equations was studied by K. Yosida [1] H. Komatsu [2], and others, under somewhat strong conditions on the coefficients. The unique continuation property of solutions of the diffusion equations was studied by Itô-Yamabe [3], Mizohata [4], Yosida [1], Shirota [5], and others. The proof of Theorems 1 and 2, shown in the next section, is suggested by K. Yosida [1]. We can extend our results in some directions:

1°. Instead of Eq. (1), we can consider the equation du/dt = A(t)u, where A(t) are generators of holomorphic semi-groups satisfying certain conditions.

2°. The condition that the restriction of A on $C_0^{\infty}(G)$ is an elliptic operator of second order can be weakened to the following one; It is an elliptic operator of order 2 m with smooth coefficients