139. A Note on the Powers of Boolean Matrices

By Shinnosuke ÔHaru
Waseda University, Tokyo
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1967)

1. Let \mathfrak{X} be the set of all $n \times n$-matrices each element of which is 1 or 0 . For any $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of \mathfrak{A}, we define multiplication by

$$
A \cdot B=\left(\sum_{k=1}^{n} \oplus a_{i k} b_{k j}\right)
$$

where $1 \oplus 1=1,1 \oplus 0=0 \oplus 1=1,0 \oplus 0=0$. It is readily seen that this multiplication is associative and we can consider the m-th power $\underbrace{A \cdot A \cdot \cdots \cdot A}_{m}$ of any element $A \in \mathfrak{A}$. We denote it by A^{m}. In this paper we shall treat the powers of elements of \mathfrak{A} under this multiplication.

Definitions, Notations, and Preliminary Notes. For any $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of \mathfrak{A}, we difine operations

$$
A \vee B=\left(a_{i j} \oplus b_{i j}\right) \text { and } A \wedge B=\left(a_{i j} b_{i j}\right)
$$

Then it is easily seen that \mathfrak{A} is a Boolean algebra under these operations. And we can define the ordering \leqq by the usual manner. This definition is equivalent to the proposition that $A \leqq B$ if and only if $a_{i j}=0$ whenever $b_{i j}=0$, and we use also the ordering $<$ defined in such a way that $A<B$ if and only if $A \leqq B$ and $A \neq B$.
$E_{s t}$ is the $s \times t$-matrix whose elements are all 1 and $O_{s t}$ is the $s \times t$-matrix whose elements are all 0 . Particularly if $s=t=n$, we denote them by E and O respectively. Under the above orderings, we can prove that $\mathrm{O} \leqq D \leqq E$ for any $D \in \mathfrak{A}$ and that $A \leqq B$ implies $D \cdot A \leqq D \cdot B$ and $A \cdot D \leqq B \cdot D$ for any $D \in \mathfrak{N}$. And $I=\left(\delta_{i j}\right)$ is the matrix such that $\delta_{i j}=1$ only if $i=j$. For any $A \in \mathfrak{A}, I \cdot A=A \cdot I=A$. Further, for each $A \in \mathfrak{A}$, we put $A^{k}=\left(\alpha_{i j}^{(k)}\right)$ for each integer $k \geqq 1$. Let $P=\left(p_{i j}\right)$ be the permutation matrix corresponding to a permutation σ in such a way that only the $p_{i \sigma(i)}$ is 1 in the i-th row and $P^{\top}=\left(p_{i j}^{\prime}\right)$ be its transpose. Then P and P^{\top} are the elements of \mathfrak{Y} and for each $A \in \mathfrak{A}$ the (i, j)-element of $P \cdot A \cdot P^{\top}$ is

$$
\sum_{l=1}^{n} \oplus\left(\sum_{k=1}^{n} \oplus p_{i k} a_{k l}\right) p_{l j}^{\prime}=\sum_{l=1}^{n} \oplus a_{\sigma(i) l} p_{j l}=a_{\sigma(i) \sigma(j)} .
$$

Thus the operation $P \cdot A \cdot P^{\top}$ is equivalent to the operation $P A P^{\top}$ by means of the usual matrix multiplication. In particular, $P \cdot P^{\top}$ $=P^{\top} \cdot P=I$. By virtue of this fact, we can apply the well known theorem for the reducibility of the matrix [1; p 45], and use the

