139. A Note on the Powers of Boolean Matrices

By Shinnosuke ÔHARU Waseda University, Tokyo (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1967)

1. Let \mathfrak{A} be the set of all $n \times n$ -matrices each element of which is 1 or 0. For any $A = (a_{ij})$ and $B = (b_{ij})$ of \mathfrak{A} , we define multiplication by

$$A \cdot B = \left(\sum_{k=1}^{n} \oplus a_{ik} b_{kj}\right)$$

where $1 \oplus 1=1, 1 \oplus 0=0 \oplus 1=1, 0 \oplus 0=0$. It is readily seen that this multiplication is associative and we can consider the *m*-th power $A \cdot A \cdot \cdots \cdot A$ of any element $A \in \mathfrak{A}$. We denote it by A^m . In this paper we shall treat the powers of elements of \mathfrak{A} under this multiplication.

Definitions, Notations, and Preliminary Notes. For any $A = (a_{ij})$ and $B = (b_{ij})$ of \mathfrak{A} , we difine operations

 $A \lor B = (a_{ij} \oplus b_{ij})$ and $A \land B = (a_{ij}b_{ij})$.

Then it is easily seen that \mathfrak{A} is a Boolean algebra under these operations. And we can define the ordering \leq by the usual manner. This definition is equivalent to the proposition that $A \leq B$ if and only if $a_{ij}=0$ whenever $b_{ij}=0$, and we use also the ordering < defined in such a way that A < B if and only if $A \leq B$ and $A \neq B$.

 E_{st} is the $s \times t$ -matrix whose elements are all 1 and O_{st} is the $s \times t$ -matrix whose elements are all 0. Particularly if s=t=n, we denote them by E and O respectively. Under the above orderings, we can prove that $O \leq D \leq E$ for any $D \in \mathfrak{A}$ and that $A \leq B$ implies $D \cdot A \leq D \cdot B$ and $A \cdot D \leq B \cdot D$ for any $D \in \mathfrak{A}$. And $I=(\delta_{ij})$ is the matrix such that $\delta_{ij}=1$ only if i=j. For any $A \in \mathfrak{A}$, $I \cdot A = A \cdot I = A$. Further, for each $A \in \mathfrak{A}$, we put $A^k = (a_{ij}^{(k)})$ for each integer $k \geq 1$. Let $P=(p_{ij})$ be the permutation matrix corresponding to a permutation σ in such a way that only the $p_{i\sigma(i)}$ is 1 in the *i*-th row and $P^{\top}=(p'_{ij})$ be its transpose. Then P and P^{\top} are the elements of \mathfrak{A} and for each $A \in \mathfrak{A}$ the (i, j)-element of $P \cdot A \cdot P^{\top}$ is

$$\sum_{l=1}^{n} \oplus \left(\sum_{k=1}^{n} \oplus p_{ik} a_{kl} \right) p_{lj}' = \sum_{l=1}^{n} \oplus a_{\sigma(i)l} p_{jl} = a_{\sigma(i)\sigma(j)}.$$

Thus the operation $P \cdot A \cdot P^{\top}$ is equivalent to the operation PAP^{\top} by means of the usual matrix multiplication. In particular, $P \cdot P^{\top} = P^{\top} \cdot P = I$. By virtue of this fact, we can apply the well known theorem for the reducibility of the matrix $\lceil 1; p \ 45 \rceil$, and use the