165. On Paracompactness and Metrizability of Spaces

By Yûkiti KATUTA

Ehime University

(Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1967)

1. Introduction. In the previous note [3], we have introduced the notion of an order locally finite collection of subsets of a topological space. This is defined as follows. A collection $\{A_{\lambda} \mid \lambda \in \Lambda\}$ of subsets of a topological space is called *order locally finite*, if we can introduce a total order < in the index set Λ such that for each $\lambda \in \Lambda$ $\{A_{\mu} \mid \mu < \lambda\}$ is locally finite at each point of A_{λ} . It is obvious that every σ -locally finite collection is order locally finite.¹⁾

The purpose of this note is prove the following theorems.

Theorem 1. Let X be a regular space. If there is an order locally finite open covering $\{G_{\lambda} \mid \lambda \in \Lambda\}$ of X such that for each λ the closure \overline{G}_{λ} of G_{λ} is paracompact, then X is paracompact.

Theorem 2. Let X be a regular space. If there is an order locally finite open covering $\{G_{\lambda} | \lambda \in A\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is compact and G_{λ} (more generally, every closed subset of X contained in G_{λ}) is paracompact, then X is paracompact.

Theorem 3. Let X be a collectionwise normal T_1 -space. If there is an order locally finite open covering $\{G_{\lambda} | \lambda \in \Lambda\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is paracompact and G_{λ} (more generally, every closed subset of X contained in G_{λ}) is paracompact, then X is paracompact.

Theorem 4. Let X be a collectionwise normal T_1 -space. If there are a closed covering $\{F_{\lambda} \mid \lambda \in \Lambda\}$ and an order locally finite open covering $\{G_{\lambda} \mid \lambda \in \Lambda\}$ of X such that for each λ $F_{\lambda} \subset G_{\lambda}$ and F_{λ} is paracompact, then X is paracompact.

Applying the metrization theorem of J. Nagata [6] and Yu. M. Smirnov [7] that a space which is the union of a locally finite collection of closed metrizable subsets is metrizable, from Theorems 1, 2, and 3 we obtain immediately the following Theorems 5, 6, and 7 respectively.

Theorem 5. Let X be a regular space. If there is an order

¹⁾ H. Tamano [9] has introduced the notion of *linearly locally finite* collections. By definition, every σ -locally finite collection is linearly locally finite and every linearly locally finite collection is order locally finite (but not conversely).

²⁾ This theorem has been proved by Tamano [9] in the case when X is a completely regular T_1 -space and $\{G_{\lambda} | \lambda \in \Lambda\}$ is lineary locally finite.