163. On Extension of Almost Periodic Functions

By Shunsuke FUNAKOSI

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1967)

In this note, we shall prove an extension theorem of almost periodic functions on a topological semifield. For the concept of topological semifield, see $\lceil 1 \rceil$ and $\lceil 2 \rceil$.

Let E_1 be an arbitrary topological semifield, E_2 a complete topological semifield. We consider the set M of all bounded function f: $E_1 \rightarrow E_2$. For f, $g \in M$, we define its distance by

$$
\rho(f, g) = \sup_{x \in E_1} d(f(x), g(x)) = \sup_{x \in E_1} |f(x) - g(x)|
$$

where $|x|$ denotes the absolute value of x. As easily seen, $\rho(f, g)$ satisfies the well known axioms on a metric. Then M is a metric space over a topological semifield E_2 . E_2 is complete, so M is complete.

Definition 1. A function $f(x)(x \in E_1)$ is called *almost periodic*, if it is continuous on E_1 , and if for every neighborhood $U_{0,\varepsilon}^q$ (in E_2) there exists a neighborhood $U_{a,a+\delta}^q$ (in E_1) containing at least one element $y=y(\varepsilon)$ for which the relation $d(f(x+y), f(x)) \in U_{0,\varepsilon}^q$ for all $x \leftarrow U_{a,a+b}^{q}$ holds.¹ Such an element $y(\varepsilon)$ is called an ε -period of the function f .

Then every almost periodic function is bounded on the topological semifield and therefore belongs to the space M.

Definition 2. A set K of a metric space X over a topological semifield is called ε -net for the set M of the space, if for every element $f \in M$ there exists an element $f_{\epsilon} \in K$ such that $\rho(f, f_{\epsilon}) \in U_{0}^{q}$.

Proposition (Extension of Hausdorff's theorem). In order that a set M in a metric space X over a topological semifield be compact, it is necessary that for every $\varepsilon > 0$ there exists a finite ε -net for M. If the space X is complete, then the condition is also sufficient.

Proof of necessity: We assume that M is compact. Let f_i be an arbitrary element of M. If $\rho(f, f_i) \in U_{0,\varepsilon}^q$ for all $f \in M$, then a finite ε -net exists. If, however, this is not the case, then there exists an element $f_2 \in M$ such that $\rho(f_1, f_2) \notin U_{0,i}^q$. If for every element $f \in M$ either $\rho(f_1, f) \in U_{0,\varepsilon}^q$ or $\rho(f_2, f) \in U_{0,\varepsilon}^q$, then we have found a finite ε -net. If, however, this does not hold, then there exists an element f_3 such that

 $(f_1, f_3) \notin U_{0,\dot{\epsilon}}^q, \qquad (f_2, f_3) \notin U_{0,\dot{\epsilon}}^q.$

Continuing this way, we obtain elements f_1, f_2, \dots, f_n for which $\rho(f_i, f_j) \notin U_{0,i}^q$ if $i \neq j$. There exist two possibilities. Either the

¹⁾ We put $U_{0,\varepsilon}^q = \{x \in E_1 | 0 < x(q) > \varepsilon\}, U_{0,\varepsilon}^q = \{x \in E_1 | 0 < x(q) \leq \varepsilon\}.$