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163. On Extension of Almost Periodic Functions

By Shunsuke FUNAKOSI
(Comm. by Kinjir5 KUNU(I, M.J..., Oct. 12, 1967)

In this note, we shall prove an extension theorem of almost
periodic functions on a topological semifield. For the concept of
topological semifield, see 1 and 2.

Let E be an arbitrary topological semifield, E. a complete
topological semifield. We consider the set M of all bounded function
f: E-E.. For f, g e M, we define its distance by

p(f, g)- sub d(f(x), g(x))= sup f(X)--
E xE

where xt denotes the absolute value of x. As easily seen, p(f, g)
satisfies the well known axioms on a metric. Then M is a metric
space over a topological semifield E.. E. is complete, so M is complete.

Definition 1. A function f(x)(x e E) is called almost periodic,
if it is continuous on E, and if for every neighborhood U0,, (in E)
there exists a neighborhood U,+ (in E) containing at least one
element y=y(s) for which the relation d(f(x/y), f(x))e U, for all
x--U:,+ holds." Such an element y(e) is called an e-period of the
function f.

Then every almost periodic function is bounded on the topological
semifield and therefore belongs to the space M.

Definition 2. A set K of a metric space X over a topological
semifield is called e-net for the set M of the space, if for every
element f e M there exists an element f, e K such that p(f, f) e U0q,.

Proposition (Extension of Hausdorf[’s theorem). In order
that a set M in a metric space X over a topological semifield be compact,
it is necessary that for every >0 there exists a finite e-net for M.
If the space X is complete, then the condition is also sufficient.

Proof of necessity: We assume that M is compact. Let f be
an arbitrary element of M. If p(f, fi)e U,, for all f e M, then a
finite e-net exists. If, however, this is not the case, then there
exists an element ft. e M such that p(fi, f) e Uo,,. If for every element
f e M either p(f, f) e U,, or p(fi., f) e U,,, then we have found a
finite e-net. If, however, this does not hold, then there exists an
element f such that

(A, f3) e U,,, (f, f3) e U0q,.
Continuing this way, we obtain elements f,fi., ...,f for which
p(fi, f)e U, if i cj. There exist two possibilities. Either the

1) We put Uoq,,={xeE1]O<x(q)>e}, U,={xeElO<x(q)<_e}.


