152. On Arithmetic Properties of Symmetric Functions of Consecutive Integers

By Bunjiro Tsumura
Tsumura Research Institute, Tokyo

(Comm. by Zyoiti Suetuna, m.J.A., Oct. 12, 1967)

1. Main results. Let n be any integer $\geqslant 2$. We shall write:

$$
\begin{equation*}
f_{n}(x)=\prod_{i=1}^{n}(x+i)=\sum_{k=0}^{\infty} a_{k}^{(n)} x^{k} \tag{1}
\end{equation*}
$$

so that we have:

$$
a_{0}^{(n)}=n!, \quad a_{n}^{(n)}=1, \quad a_{n+1}^{(n)}=a_{n+2}^{(n)}=\cdots=0
$$

and $a_{k}^{(n)}(1 \leq k \leq n-1)$ is the elementary symmetric function of degree ($n-k$) of n consecutive integers $\{1,2, \cdots, n\}$. These numbers have interesting arithmetic properties as shown in the following theorems:

Theorem 1. Let p be any prime and suppose $p-1 \leq n$. $a_{k}^{(n)}$ being defined by (1), put

$$
\begin{equation*}
b_{j}^{(n)}=\sum_{\nu=0}^{\infty} a_{j+(p-1) \nu}^{(n)}, \quad j=0,1, \cdots, p-2 \tag{2}
\end{equation*}
$$

(The right-hand side of (2) is a finite sum, because $a_{n+1}^{(n)}=a_{n+2}^{(n)}=\cdots=0$.)
Then we have
(3) $\quad b_{j}^{(n)} \equiv 0 \quad(\bmod p)$
for $j=0,1, \cdots, p-2$.
Remark. When $p-1=n$, (3) means

$$
\begin{equation*}
b_{0}^{(p-1)}=a_{0}^{(p-1)}+a_{p-1}^{(p-1)}=(p-1)!+1 \equiv 0 \quad(\bmod p) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}^{(p-1)} \equiv a_{2}^{(p-1)} \equiv \cdots \equiv a_{p-2}^{(p-1)} \equiv 0 \quad(\bmod p) . \tag{5}
\end{equation*}
$$

(4) is nothing but the classical theorem of Wilson. Thus Theorem 1 can be regarded as a generalization of Wilson's theorem.

From (5) follows, by the fundamental theorem on symmetric functions that any homogeneous symmetric function of $\{1,2, \cdots, p-1\}$ with integral coefficients of a positive degree $\leq p-2$ is always divisible by p. The following theorem gives a more precise result:

Theorem 2. Let p be any prime $\geqslant 3$. Then any homogeneous symmetric function of $\{1,2, \cdots, p-1\}$ with integral coefficients of odd degree which is $\geqslant 3$ and $\leq p-2$, is always divisible by p^{2}.

Some special cases of this theorem are reported in Dickson [1], pp. 95-96.

The following theorem concerns again $\alpha_{k}^{(n)}$ for general n (not only for $n=p-1$).

Theorem 3. $a_{k}^{(n)}$ being defined by (1) as above, and p being any

