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1. Main results. Let n be any integer >2. We shall write"

( A(x)- II (x + i)-
i=1 k=O

so that we have:
a)-nl, + +

and a") (1 gkgn- 1) is the elementary symmetric function of degree
(n-k) of n consecutive integers (1, 2,..., n}. These numbers have
interesting arithmetic properties as shown in the following theorems"

Theorem 1. Let p be any prime and suppose p-lgn. a)
being defined by (1), put

(2) 5(-)--(-) j-0,1,.., p-2.
0

(The right-hand side of (2) is a finite sum, because +-() +-(’) -0.)
Then we have

0 (rood p)
for j-O, 1, ..., p-2.

Remark. When p-l-n, (3) means

(4) b-)-a-" +-(-)-(p-1)l +lO
_

(mod p)
and
(5) a[-) a(-" a(-) 0 (mod p).

(4) is nothing but the classical theorem of Wilson. Thus TheOrem
1 can be regarded as a generalization of Wilson’s theorem.

From (5)follows, by the fundamental theorem on symmetric
functions that any homogeneous symmetric function of {1,2,..., p-1}
with integral coefficients of a positive degree _p-2 is always
divisible by p. The following theorem gives a more precise result:

Theorem 2. Let p be any prime >/3. Then any homogeneous
symmetric function of {1, 2, ..., p- 1} with integral coeJcients of
odd degree which is >3 and _p-2, is always divisible by p.

Some special cases of this theorem are reported in Dickson _1,
pp. 95-96.

The following theorem concerns again a() for general n (not only
for n=p-l).

Theorem 3. a) being defined by (1) as above, and p being any


