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1. Introduction. The aim of this paper is to determine the
representation ring R(F) of group F,, which is a simply connected
compact simple Lie group of exceptional type F. Let denote
the Jordan algebra consisting of all 3-hermitian matrices over the
division ring of Cayley numbers. The group F is obtained as the
automorphism group of . Let 0 be the set of all elements of

with zero trace. Then 0 is invariant by the operation of F,.
Thus we have an F,-C-module 0(R)C.) On the other hand, we
know another F-C-module F,(R)C, where F is the Lie algebra of F,.
The result is as follows: R(F) is a polynomial ring Z, 2., , [
with 4 variables 21, 22, 23, and [, where 2 is the class of the exterior
F,-C-module 4(o(R)RC) in R(F) for i= 1, 2, 3, and [ is the class of
(R)C in R(F,). In this paper, we shall describe the outline of
our methods; these may be analogous to those as in the cases of
classical groups [1 and of group G. [2. The details will appear in
the Journal of the Faculty of Science, Shinshu University, vol. 3,
1968.

2. Representation ring. Let G be a topological group. Let
M(G) denote the set of all G-C-isomorphism classes of G-C-modules.
The direct sum V@ W and the tensor product V(R) W of two G-C-
modules V, W define a semiring structure on M(G). The represen-
tation ring R(G)=(R(G), ) (where : M(G)---R(G) is a semiring
homomorphism) is the universal ring associated with the semiring
M(a).

3. Jordan algebra , group F and Lie algebra (R)C.
Let denote the division ring of Cayley numbers and be the

set of all 3-hermitian matrices X over . In , we define a Jordan
multiplication by

Xo Y:(XY+ YX).

Then is a 27-dimensional commutative distributive (non-asso-
ciative) algebra over R. Let F, denote the group of all automorphisms
of . As is well known, F, is a simply connected compact simple
Lie group of exceptional type F. Obviously, is an F,-R-module.

1) R and C are the fields of real and complex numbers, respectively.


