188. Representation Ring of Lie Group F_4

By Ichiro Yokota

Department of Mathematics, Shinshu University, Matsumoto, Japan

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

Introduction. The aim of this paper is to determine the 1. representation ring $R(F_4)$ of group F_4 , which is a simply connected compact simple Lie group of exceptional type F. Let \Im denote the Jordan algebra consisting of all 3-hermitian matrices over the division ring of Cayley numbers. The group F_4 is obtained as the automorphism group of \Im . Let \Im_0 be the set of all elements of \mathfrak{Z} with zero trace. Then \mathfrak{Z}_0 is invariant by the operation of F_4 . Thus we have an F_4 -C-module $\mathfrak{Z}_0 \otimes_R C^{(1)}$ On the other hand, we know another F_4 -C-module $F_4 \otimes_{\mathbb{R}} C$, where F_4 is the Lie algebra of F_4 . The result is as follows: $R(F_4)$ is a polynomial ring $Z[\lambda_1, \lambda_2, \lambda_3, \mu]$ with 4 variables λ_1 , λ_2 , λ_3 , and μ , where λ_i is the class of the exterior F_4 -C-module $\Lambda^i(\mathfrak{N}_0 \otimes_{\mathbb{R}} C)$ in $R(F_4)$ for i=1, 2, 3, and μ is the class of $\mathfrak{F}_4 \otimes_{\mathbb{R}} C$ in $R(F_4)$. In this paper, we shall describe the outline of our methods; these may be analogous to those as in the cases of classical groups [1] and of group G_2 [2]. The details will appear in the Journal of the Faculty of Science, Shinshu University, vol. 3, 1968.

2. Representation ring. Let G be a topological group. Let M(G) denote the set of all G-C-isomorphism classes of G-C-modules. The direct sum $V \oplus W$ and the tensor product $V \otimes W$ of two G-C-modules V, W define a semiring structure on M(G). The representation ring $R(G) = (R(G), \phi)$ (where $\phi: M(G) \rightarrow R(G)$ is a semiring homomorphism) is the universal ring associated with the semiring M(G).

3. Jordan algebra \mathfrak{F}_4 , group F_4 and Lie algebra $\mathfrak{F}_4 \otimes_{\mathbb{R}} C$.

Let \mathfrak{C} denote the division ring of Cayley numbers and \mathfrak{F} be the set of all 3-hermitian matrices X over \mathfrak{C} . In \mathfrak{F} , we define a Jordan multiplication by

$$X \circ Y = \frac{1}{2}(XY + YX).$$

Then \mathfrak{F} is a 27-dimensional commutative distributive (non-associative) algebra over R. Let F_4 denote the group of all automorphisms of \mathfrak{F} . As is well known, F_4 is a simply connected compact simple Lie group of exceptional type F. Obviously, \mathfrak{F} is an F_4 -R-module.

¹⁾ R and C are the fields of real and complex numbers, respectively.