A Note on Almost-Countably Paracompact Spaces 187.

By M. K. SINGAL and Asha RANI University of Delhi, India (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

In a recent paper [1] the concept of almost-countably paracompact spaces has been introduced. A space X is said to be almostcountably paracompact if for each countable open covering \mathcal{A} of X there exists a locally-finite family \mathcal{B} of open subsets of X which refines \mathcal{A} and the family of closures of members of \mathcal{B} forms a covering of X. In the present note we give a characterization of such spaces.

 A° denotes the interior of A and \overline{A} denotes the closure of A.

Theorem 1. For a topological space (X, ζ) the following are equivalent:

(a) X is almost-countably paracompact.

(b) For every decreasing sequence $\{F_i\}$ of closed subsets of X such that $F_i^0 \neq \phi$ for all i and $\bigcap_{i \in N} F_i \subset U$ where U is open, there exists a decreasing sequence $\{G_i\}$ of open subsets of X such that $F_i^0 \subset \overline{G}_i \text{ for each } i \text{ and } \bigcap_{i \in \mathbb{N}} \overline{G}_i \subset \overline{U}.$

(c) For each decreasing sequence $\{F_i\}$ of closed subsets of X such that $F_i^0 \neq \phi$ for each i and $\bigcap_{i \in N} F_i \subset U$ where U is open, there exists a decreasing sequence $\{H_i\}$ of closed subsets of X such that

 $\begin{array}{l} F_i^{\scriptscriptstyle 0} \subset H_i \ \ for \ \ each \ \ i \ \ and \ \ \bigcap_{i \in N} H_i \subset \overline{U}. \\ \textbf{Proof.} \ \ (a) \Rightarrow (b). \ \ \textbf{Since} \ \ \bigcap_{i \in N} F_i \subset U, \ \ \textbf{therefore} \ \ X \sim U \subset X \sim \bigcap_{i \in N} F_i \\ = \bigcup_{i \in N} X \sim F_i. \ \ \textbf{Thus} \ \{X \sim F_i: \ i \in N\} \cup \{U\} \ \ \textbf{is a countable open covering} \end{array}$ of X. Therefore there exists a locally-finite family $\{V_i\}$ of open subsets of X such that $V_i \subset X \sim F_i$ for each *i* and $(\bigcup_{i \in N} \overline{V_i}) \cup \overline{U} = X$. For each *i* let $G_i = \bigcup_{\substack{n=i+1 \\ n=i+1}} (V_n \cup U)$. Then $\overline{G_i} \supset X \sim (\overline{V_1} \cup \overline{V_i}) \cup \overline{V_i}) \supset X$ $\sim \overline{X \sim F_i} = F_i^0$. Thus $\{G_i\}$ is a decreasing sequence of open sets such that $F_i^o \subset \overline{G}_i$. We shall show now that $\bigcap_{i \in N} \overline{G}_i \subset \overline{U}$. If a point $x \in \bigcap_{i \in N} \overline{G}_i$ and $x \notin \overline{U}$, then $\{\overline{V}_i\}$ being locally-finite there exists an open set \overline{M}_x which intersects finitely many sets \overline{V}_i^s . Therefore there exists an integer *i* such that $M_x \cap \left(\bigcup_{n=i+1}^{\infty} \bar{V}_n\right) = \phi$. Therefore $x \notin \bigcup_{n=i+1}^{\infty} \bar{V}_n$. Also, $x \notin \bar{U}$. Therefore $x \notin \bar{G}_i$, which is a contradiction. Therefore $x \in \bigcap_{i \in N} \bar{G}_i$, which implies $x \in \bar{U}$. Thus $\bigcap_{i \in N} \bar{G}_i \subset \bar{U}$. $(b) \Rightarrow (c)$. This is obvious since we can take $H_i = \bar{G}_i$.

 $(c) \Rightarrow (a)$. Let $\{U_i\}$ be any countable open covering of X. For