186. On the Representations of $\operatorname{SL}(3, \mathrm{C})$. I

By Masao Tsuchikawa

(Comm. by Kinjirô Kunugi, m.J.A., Nov. 13, 1967)

1. We shall determine the intertwinning operators and the equivalence relation among the representations of the group $S L(3, C)$, generalizing the method described in [1] for $S L(2, C)$. We denote by G the group $S L(3, C)$ and we adopt the notations of the book [2] thoughout this paper, but elements of Z will be denoted by

$$
z=\left[\begin{array}{lll}
1 & & \\
z_{1} & 1 & \\
z_{3} & z_{2} & 1
\end{array}\right] \text {, especially } z_{1}=\left[\begin{array}{lll}
1 & & \\
z_{1} & 1 & \\
& &
\end{array}\right]
$$

and so on. Let W be the Weyl group of G consisted of $s_{0}=e$, $s_{1}, s_{2}, s_{3}=s_{2} s_{1}, s_{4}=s_{1} s_{2}$ and $s_{5}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$, where

$$
s_{1}=\left[\begin{array}{lll}
& 1 & \\
1 & & \\
& & -1
\end{array}\right], \quad s_{2}=\left[\begin{array}{ccc}
-1 & & \\
& & 1 \\
& 1 &
\end{array}\right] .
$$

Let G^{0} be the set of all g such that $g_{33} \cdot g^{11} \neq 0$, then $g=k z$ for all $g \in G^{0}$.
2. Let χ be an integral character of $D: \chi(\delta)=\left(\delta_{2} \delta_{3}\right)^{\left(l_{1}, m_{1}\right)} \delta_{3}^{\left(l_{2}, m_{2}\right)}$ ($l_{k}, m_{k}>0$), and \mathcal{E}_{χ} be the finite dimensional vector space of polynomials φ on Z which are at most of degree $\left(l_{1}-1, m_{1}-1\right)$ with respect to $z_{1}, z_{1} z_{2}-z_{3}$ and of degree ($l_{2}-1, m_{2}-1$) with respect to z_{2}, z_{3}. Then, according to the theorem of Cartan and Weyl, for every finite dimensional irreducible representation of G there exists χ such that given representation E^{x} is realized on \mathcal{E}_{χ} by $E_{g}^{\chi} \varphi(z)$ $=\chi \beta^{-1 / 2}\left(k_{g}\right) \varphi\left(z_{g}\right)$.

Now let $\chi=(\lambda, \mu)$ be a complex character of $D: \chi(\delta)=\left(\delta_{2} \delta_{3}\right)^{\left(\lambda_{1}, \mu_{1}\right)}$ $\delta_{3}^{\left(\lambda_{2}, \mu_{2}\right)}\left(\lambda_{k}, \mu_{k}\right.$ are complex numbers and $\lambda_{k}-\mu_{k}$ are integers $)$, then we can construct a representation $\left\{T^{x}, \mathscr{D}_{\alpha}\right\}$ as follows. Let \mathscr{D}_{α} be the vector space of C^{∞}-functions φ on Z, satisfying the condition that for every $s \in W \varphi_{s}(z)=\chi \beta^{-1 / 2}\left(k_{s}\right) \varphi\left(z_{s}\right)$ is also a C^{∞}-function. The topology of \mathscr{D}_{χ} is defined by the compact uniform convergence of every derivative for every $\varphi_{s}(s \in W)$. The operator T_{g}^{χ} on \mathscr{D}_{χ} is defined by $T_{g}^{\chi} \varphi(z)=\chi \beta^{-1 / 2}\left(k_{g}\right) \varphi\left(z_{g}\right)$. This representation is identical with the induced representation $T^{x}=\operatorname{Ind}\{\chi \mid K \rightarrow G\}$. If all λ_{k}, μ_{k} are positive integers, the representation $\left\{E^{x}, \mathcal{E}_{\chi}\right\}$ is contained in $\left\{T^{x}, \mathscr{D}_{x}\right\}$ as a sub-representation.
3. Let $B(\varphi, \psi)$ be a continuous bilinear form on $\mathscr{D}_{\chi} \times \mathscr{D}_{\chi^{\prime}}$ such

