184. Notes on Groupoids and their Automorphism Groups

By Takayuki TAMURA

University of California, Davis, California, U.S.A. (Comm. by Kenjiro SHODA, M.J.A., Nov. 13, 1967)

A groupoid is a set with a binary operation which need not be associative. The group of all automorphisms of a groupoid G is called the automorphism group of G and it is denoted by $\mathfrak{A}(G)$. Let $\mathfrak{S}(G)$ denote the symmetric group on the set G. In [2] the author determined the structure of G satisfying $\mathfrak{A}(G) = \mathfrak{S}(G)$. This paper supplements equivalent conditions to the theorem in case |G| > 4, and adds some related results.

In $\lceil 2 \rceil$ the author gave the following theorem.

Theorem 1. Let G be a groupoid. $\mathfrak{A}(G) = \mathfrak{S}(G)$ if and only if G is either isomorphic or anti-isomorphic onto one on the following types:

- (1.1) A right zero semigroup: xy = y for all x, y.
- (1.2) The idempotent quasigroup of order 3.
- (1.3) The groupoid $\{1, 2\}$ of order 2 defined by $x \cdot 1 = 2$, $x \cdot 2 = 1$ for x = 1, 2.

Before introducing the main theorem in this paper, we mention some remarks on the terminology (see [1]). We do not assume the finiteness of G.

By a finite permutation φ of a set G we mean a permutation φ of G such that the set $\{x \in G; x\varphi \neq x\}$ is finite. A permutation φ of G is called even if and only if φ is a finite permutation which is the product of even number of substitutions (i.e. cycles of length 2). An odd permutation is defined in a similar way. Let \mathfrak{P} be a permutation group on G. Let K be a positive integer with $K \leq |G|$. \mathbb{P} is called K-ply transitive if and only if for an arbitrary set of K distinct elements K_1, \dots, K_k and for an arbitrary set of K_k distinct elements K_1, \dots, K_k there is $K_k \in \mathbb{P}$ such that $K_k \in \mathbb{P}$ for $K_k \in \mathbb{P}$. Let $K_k \in \mathbb{P}$ denote the group of all automorphisms and all antiautomorphisms of $K_k \in \mathbb{P}$. $K_k \in \mathbb{P}$ is a subgroup of $K_k \in \mathbb{P}$ and the index of $K_k \in \mathbb{P}$ in $K_k \in \mathbb{P}$ is 2. Let $K_k \in \mathbb{P}$ denote the group of all finite permutations of $K_k \in \mathbb{P}$.

Theorem 2. Let G be a groupoid with |G|>4. Then the following statements are equivalent.

(2.1) A groupoid G is isomorphic onto either a right zero