184. Notes on Groupoids and their Automorphism Groups

By Takayuki Tamura
University of California, Davis, California, U.S.A.
(Comm. by Kenjiro Shoda, m.J.A., Nov. 13, 1967)

A groupoid is a set with a binary operation which need not be associative. The group of all automorphisms of a groupoid G is called the automorphism group of G and it is denoted by $\mathfrak{A}(G)$. Let $\mathfrak{S}(G)$ denote the symmetric group on the set G. In [2] the author determined the structure of G satisfying $\mathfrak{A}(G)=\mathfrak{S}(G)$. This paper supplements equivalent conditions to the theorem in case $|G|>4$, and adds some related results.

In [2] the author gave the following theorem.
Theorem 1. Let G be a groupoid. $\quad \mathfrak{P}(G)=\mathfrak{S}(G)$ if and only if G is either isomorphic or anti-isomorphic onto one on the following types:
(1.1) A right zero semigroup: $x y=y$ for all x, y.
(1.2) The idempotent quasigroup of order 3.
(1.3) The groupoid $\{1,2\}$ of order 2 defined by

$$
x \cdot 1=2, x \cdot 2=1 \quad \text { for } x=1,2 \text {. }
$$

Before introducing the main theorem in this paper, we mention some remarks on the terminology (see [1]). We do not assume the finiteness of G.

By a finite permutation φ of a set G we mean a permutation φ of G such that the set $\{x \in G ; x \varphi \neq x\}$ is finite. A permutation φ of G is called even if and only if φ is a finite permutation which is the product of even number of substitutions (i.e. cycles of length 2). An odd permutation is defined in a similar way. Let \mathfrak{g} be a permutation group on G. Let k be a positive integer with $k \leqq|G|$. \mathfrak{S} is called k-ply transitive if and only if for an arbitrary set of k distinct elements a_{1}, \cdots, a_{k} and for an arbitrary set of k distinct elements $a_{1}^{\prime}, \cdots, a_{k}^{\prime}$, there is $\varphi \in \mathfrak{G}$ such that $a_{i} \varphi=a_{i}^{\prime}$ for $i=1, \cdots, k$. Let $\mathfrak{B}(G)$ denote the group of all automorphisms and all antiautomorphisms of G. $\mathfrak{A}(G)$ is a subgroup of $\mathfrak{B}(G)$ and the index of $\mathfrak{U}(G)$ in $\mathfrak{B}(G)$ is 2 . Let $\mathfrak{S}^{*}(G)$ denote the group of all finite permutations of G.

Theorem 2. Let G be a groupoid with $|G|>4$. Then the following statements are equivalent.
(2.1) A groupoid G is isomorphic onto either a right zero

